Kubernetes原生AI应用部署新趋势:Kueue与Ray Operator结合实现弹性AI训练集群

D
dashi97 2025-09-13T00:27:03+08:00
0 0 219

Kubernetes原生AI应用部署新趋势:Kueue与Ray Operator结合实现弹性AI训练集群

引言

随着人工智能技术的快速发展,AI模型训练的复杂性和资源需求呈指数级增长。传统的静态资源分配方式已经无法满足现代AI工作负载的需求,特别是在Kubernetes环境中,如何高效地管理和调度AI训练任务成为了关键挑战。

Kueue和Ray Operator作为Kubernetes生态中的两个重要组件,为解决这一问题提供了创新的解决方案。Kueue提供了强大的队列管理和资源配额控制能力,而Ray Operator则专门针对分布式AI训练场景进行了优化。本文将深入探讨如何将这两个工具结合使用,构建一个高效、弹性的AI训练集群。

技术背景

Kubernetes在AI场景中的挑战

在传统的Kubernetes部署中,AI训练任务面临着以下主要挑战:

  1. 资源竞争:多个训练任务同时运行时容易产生资源争抢
  2. 缺乏队列管理:无法有效管理任务的优先级和执行顺序
  3. 静态资源分配:难以根据实际需求动态调整资源
  4. 成本控制困难:无法精确控制资源使用量和成本

Kueue简介

Kueue是Kubernetes的一个子项目,专门用于工作负载队列管理。它提供了以下核心功能:

  • 工作负载队列管理
  • 资源配额和限制
  • 优先级调度
  • 多租户资源隔离
  • 自动资源回收

Ray Operator简介

Ray是一个开源的分布式计算框架,特别适合AI和机器学习工作负载。Ray Operator为Kubernetes提供了原生的Ray集群管理能力:

  • Ray集群的声明式管理
  • 自动扩缩容
  • 资源优化
  • 故障恢复

架构设计

整体架构图

┌─────────────────────────────────────────────────────────────┐
│                    Kubernetes Cluster                        │
├─────────────────────────────────────────────────────────────┤
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐          │
│  │   Kueue     │  │ Ray Operator│  │   Workload  │          │
│  │ Controller  │  │             │  │   Manager   │          │
│  └─────────────┘  └─────────────┘  └─────────────┘          │
│         │                 │                 │               │
│         ▼                 ▼                 ▼               │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐          │
│  │   Queue     │  │ RayCluster  │  │ Job/Workload│          │
│  │  Manager    │  │   CRD       │  │   CRD       │          │
│  └─────────────┘  └─────────────┘  └─────────────┘          │
└─────────────────────────────────────────────────────────────┘

核心组件交互流程

  1. 用户提交AI训练任务到Kueue队列
  2. Kueue根据资源配额和优先级进行调度
  3. Ray Operator创建和管理Ray集群实例
  4. 训练任务在Ray集群中执行
  5. 自动扩缩容根据负载动态调整资源

环境准备

前置条件

  • Kubernetes集群(v1.21+)
  • kubectl命令行工具
  • Helm 3.x
  • 基础的Kubernetes操作经验

安装Kueue

# 添加Kueue Helm仓库
helm repo add kueue https://kubernetes-sigs.github.io/kueue
helm repo update

# 安装Kueue
helm install kueue kueue/kueue --namespace kueue-system --create-namespace

# 验证安装
kubectl get pods -n kueue-system

安装Ray Operator

# 添加Ray Helm仓库
helm repo add ray https://ray-project.github.io/kuberay-helm/
helm repo update

# 安装Ray Operator
helm install kuberay-operator ray/kuberay-operator --namespace ray-system --create-namespace

# 验证安装
kubectl get pods -n ray-system

配置资源配额

创建ClusterQueue

ClusterQueue定义了集群级别的资源配额和调度策略:

apiVersion: kueue.x-k8s.io/v1beta1
kind: ClusterQueue
metadata:
  name: ai-training-cq
spec:
  namespaceSelector: {} # 匹配所有命名空间
  resourceGroups:
  - coveredResources: ["cpu", "memory", "nvidia.com/gpu"]
    flavors:
    - name: "default-flavor"
      resources:
      - name: "cpu"
        nominalQuota: 32
      - name: "memory"
        nominalQuota: 128Gi
      - name: "nvidia.com/gpu"
        nominalQuota: 8
  admissionChecks:
  - name: "autoscaling"

创建LocalQueue

LocalQueue为特定命名空间提供资源配额:

apiVersion: kueue.x-k8s.io/v1beta1
kind: LocalQueue
metadata:
  namespace: ai-training
  name: training-lq
spec:
  clusterQueue: ai-training-cq

Ray集群配置

创建RayCluster模板

apiVersion: ray.io/v1
kind: RayCluster
metadata:
  name: ai-training-cluster
spec:
  rayVersion: '2.9.0'
  # Head node配置
  headGroupSpec:
    rayStartParams:
      dashboard-host: "0.0.0.0"
      num-cpus: "2"
    template:
      spec:
        containers:
        - name: ray-head
          image: rayproject/ray:2.9.0-py310
          ports:
          - containerPort: 6379
            name: gcs
          - containerPort: 8265
            name: dashboard
          - containerPort: 10001
            name: client
          lifecycle:
            preStop:
              exec:
                command: ["/bin/sh", "-c", "ray stop"]
          resources:
            requests:
              cpu: 2
              memory: 4Gi
            limits:
              cpu: 2
              memory: 4Gi
  # Worker节点配置
  workerGroupSpecs:
  - groupName: small-group
    replicas: 2
    minReplicas: 0
    maxReplicas: 10
    rayStartParams:
      num-cpus: "4"
    template:
      spec:
        containers:
        - name: ray-worker
          image: rayproject/ray:2.9.0-py310
          lifecycle:
            preStop:
              exec:
                command: ["/bin/sh", "-c", "ray stop"]
          resources:
            requests:
              cpu: 4
              memory: 8Gi
            limits:
              cpu: 4
              memory: 8Gi

AI训练任务部署

创建RayJob

RayJob是专门为AI训练任务设计的CRD:

apiVersion: ray.io/v1
kind: RayJob
metadata:
  name: ai-training-job
spec:
  entrypoint: python /home/ray/train_model.py
  runtimeEnv:
    working_dir: "s3://my-bucket/training-code/"
    pip: ["torch==2.0.0", "transformers==4.30.0"]
  rayClusterSpec:
    rayVersion: '2.9.0'
    headGroupSpec:
      rayStartParams:
        dashboard-host: "0.0.0.0"
      template:
        spec:
          containers:
          - name: ray-head
            image: rayproject/ray:2.9.0-py310
            resources:
              requests:
                cpu: 1
                memory: 2Gi
              limits:
                cpu: 1
                memory: 2Gi
    workerGroupSpecs:
    - groupName: gpu-workers
      replicas: 0
      minReplicas: 0
      maxReplicas: 4
      rayStartParams:
        num-gpus: "1"
      template:
        spec:
          containers:
          - name: ray-worker
            image: rayproject/ray:2.9.0-py310-gpu
            resources:
              requests:
                cpu: 2
                memory: 8Gi
                nvidia.com/gpu: 1
              limits:
                cpu: 2
                memory: 8Gi
                nvidia.com/gpu: 1

集成Kueue调度

通过在RayJob中添加Kueue注解来启用队列调度:

apiVersion: ray.io/v1
kind: RayJob
metadata:
  name: ai-training-job-with-queue
  annotations:
    kueue.x-k8s.io/queue-name: training-lq
spec:
  # ... 其他配置保持不变
  suspend: true  # 初始状态为挂起,等待Kueue调度

自动扩缩容配置

基于指标的扩缩容

配置HPA(Horizontal Pod Autoscaler)来实现自动扩缩容:

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: ray-worker-hpa
spec:
  scaleTargetRef:
    apiVersion: ray.io/v1
    kind: RayCluster
    name: ai-training-cluster
  minReplicas: 1
  maxReplicas: 10
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 70
  - type: Resource
    resource:
      name: memory
      target:
        type: Utilization
        averageUtilization: 80

自定义扩缩容策略

创建自定义的扩缩容策略:

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: custom-ray-hpa
spec:
  scaleTargetRef:
    apiVersion: ray.io/v1
    kind: RayCluster
    name: ai-training-cluster
  minReplicas: 2
  maxReplicas: 20
  behavior:
    scaleDown:
      stabilizationWindowSeconds: 300
      policies:
      - type: Percent
        value: 10
        periodSeconds: 60
    scaleUp:
      stabilizationWindowSeconds: 60
      policies:
      - type: Percent
        value: 50
        periodSeconds: 60
  metrics:
  - type: Pods
    pods:
      metric:
        name: ray_task_queue_length
      target:
        type: AverageValue
        averageValue: "5"

监控和日志

Prometheus监控配置

配置ServiceMonitor来收集Ray集群指标:

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: ray-cluster-monitor
  labels:
    app: ray-cluster
spec:
  selector:
    matchLabels:
      ray.io/cluster: ai-training-cluster
  endpoints:
  - port: dashboard
    path: /metrics
    interval: 30s

日志收集配置

配置Fluentd或类似工具来收集训练日志:

apiVersion: v1
kind: ConfigMap
metadata:
  name: fluentd-config
data:
  fluent.conf: |
    <source>
      @type tail
      path /var/log/containers/ray-*.log
      pos_file /var/log/fluentd-ray.pos
      tag ray.*
      <parse>
        @type json
        time_key time
        time_format %Y-%m-%dT%H:%M:%S.%NZ
      </parse>
    </source>
    
    <match ray.**>
      @type elasticsearch
      host elasticsearch
      port 9200
      logstash_format true
    </match>

最佳实践

资源规划建议

  1. CPU和内存分配:为head节点分配足够的资源,worker节点根据训练需求调整
  2. GPU资源管理:使用资源配额严格控制GPU使用
  3. 存储优化:使用持久化存储来保存训练数据和模型

安全配置

apiVersion: v1
kind: Secret
metadata:
  name: training-secrets
type: Opaque
data:
  api-key: <base64-encoded-api-key>
  database-password: <base64-encoded-password>
---
apiVersion: ray.io/v1
kind: RayJob
metadata:
  name: secure-training-job
spec:
  # ... 其他配置
  rayClusterSpec:
    workerGroupSpecs:
    - # ... worker配置
      template:
        spec:
          containers:
          - name: ray-worker
            # ... 其他配置
            envFrom:
            - secretRef:
                name: training-secrets

故障恢复策略

配置PodDisruptionBudget来保证集群稳定性:

apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:
  name: ray-head-pdb
spec:
  minAvailable: 1
  selector:
    matchLabels:
      ray.io/node-type: head

性能优化

网络优化

apiVersion: ray.io/v1
kind: RayCluster
metadata:
  name: optimized-ray-cluster
spec:
  # ... 其他配置
  headGroupSpec:
    template:
      spec:
        containers:
        - name: ray-head
          # ... 其他配置
          env:
          - name: RAY_DISABLE_DOCKER_CPU_WARNING
            value: "1"
          - name: RAY_memory_monitor_refresh_ms
            value: "0"

存储优化

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: training-data-pvc
spec:
  accessModes:
  - ReadWriteMany
  resources:
    requests:
      storage: 100Gi
  storageClassName: fast-ssd
---
apiVersion: ray.io/v1
kind: RayJob
metadata:
  name: optimized-training-job
spec:
  # ... 其他配置
  rayClusterSpec:
    workerGroupSpecs:
    - # ... worker配置
      template:
        spec:
          volumes:
          - name: training-data
            persistentVolumeClaim:
              claimName: training-data-pvc
          containers:
          - name: ray-worker
            # ... 其他配置
            volumeMounts:
            - name: training-data
              mountPath: /data

故障排除

常见问题诊断

  1. 资源不足:检查ClusterQueue配额和实际使用情况
  2. 调度失败:查看Kueue控制器日志和事件
  3. 训练卡顿:检查Ray集群状态和资源使用率

监控命令

# 查看Kueue状态
kubectl get clusterqueues
kubectl get localqueues -A
kubectl get workloads -A

# 查看Ray集群状态
kubectl get rayclusters -A
kubectl get rayjobs -A

# 查看资源使用情况
kubectl top nodes
kubectl top pods -A

日志查看

# 查看Kueue控制器日志
kubectl logs -n kueue-system deployment/kueue-controller-manager

# 查看Ray Operator日志
kubectl logs -n ray-system deployment/kuberay-operator

# 查看Ray集群日志
kubectl logs -l ray.io/cluster=ai-training-cluster

高级特性

多租户支持

配置多租户环境下的资源隔离:

apiVersion: kueue.x-k8s.io/v1beta1
kind: ClusterQueue
metadata:
  name: team-a-cq
spec:
  namespaceSelector:
    matchLabels:
      team: team-a
  resourceGroups:
  - coveredResources: ["cpu", "memory"]
    flavors:
    - name: "team-a-flavor"
      resources:
      - name: "cpu"
        nominalQuota: 16
      - name: "memory"
        nominalQuota: 64Gi
---
apiVersion: kueue.x-k8s.io/v1beta1
kind: ClusterQueue
metadata:
  name: team-b-cq
spec:
  namespaceSelector:
    matchLabels:
      team: team-b
  resourceGroups:
  - coveredResources: ["cpu", "memory"]
    flavors:
    - name: "team-b-flavor"
      resources:
      - name: "cpu"
        nominalQuota: 16
      - name: "memory"
        nominalQuota: 64Gi

优先级调度

配置不同优先级的训练任务:

apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
  name: high-priority
value: 1000000
globalDefault: false
description: "High priority AI training jobs"
---
apiVersion: ray.io/v1
kind: RayJob
metadata:
  name: high-priority-training
spec:
  # ... 其他配置
  template:
    spec:
      priorityClassName: high-priority

成本优化

Spot实例使用

配置使用Spot实例来降低成本:

apiVersion: ray.io/v1
kind: RayCluster
metadata:
  name: cost-optimized-cluster
spec:
  workerGroupSpecs:
  - groupName: spot-workers
    replicas: 0
    minReplicas: 0
    maxReplicas: 20
    template:
      spec:
        nodeSelector:
          kubernetes.io/instance-type: spot
        tolerations:
        - key: spot
          operator: Equal
          value: "true"
          effect: NoSchedule

资源回收策略

配置资源回收来优化成本:

apiVersion: kueue.x-k8s.io/v1beta1
kind: ClusterQueue
metadata:
  name: cost-aware-cq
spec:
  # ... 其他配置
  preemption:
    reclaimWithinCohort: Never
    withinClusterQueue: LowerPriority

总结

通过将Kueue和Ray Operator结合使用,我们可以构建一个强大而灵活的AI训练平台。这种组合提供了以下关键优势:

  1. 资源高效利用:通过队列管理和配额控制,最大化资源利用率
  2. 弹性扩缩容:根据实际负载动态调整资源,降低成本
  3. 多租户支持:为不同团队提供资源隔离和公平调度
  4. 成本控制:通过精细化的资源管理和调度策略控制成本

在实际部署中,建议根据具体的业务需求和资源情况来调整配置参数,并建立完善的监控和告警机制来确保系统的稳定运行。

随着云原生AI技术的不断发展,Kueue和Ray Operator的结合将为AI应用部署提供更加成熟和可靠的解决方案,推动AI训练向更加自动化、智能化的方向发展。

相似文章

    评论 (0)