Kubernetes原生AI应用部署新趋势:Kueue与Ray Operator结合实现弹性AI训练集群
引言
随着人工智能技术的快速发展,AI模型训练的复杂性和资源需求呈指数级增长。传统的静态资源分配方式已经无法满足现代AI工作负载的需求,特别是在Kubernetes环境中,如何高效地管理和调度AI训练任务成为了关键挑战。
Kueue和Ray Operator作为Kubernetes生态中的两个重要组件,为解决这一问题提供了创新的解决方案。Kueue提供了强大的队列管理和资源配额控制能力,而Ray Operator则专门针对分布式AI训练场景进行了优化。本文将深入探讨如何将这两个工具结合使用,构建一个高效、弹性的AI训练集群。
技术背景
Kubernetes在AI场景中的挑战
在传统的Kubernetes部署中,AI训练任务面临着以下主要挑战:
- 资源竞争:多个训练任务同时运行时容易产生资源争抢
- 缺乏队列管理:无法有效管理任务的优先级和执行顺序
- 静态资源分配:难以根据实际需求动态调整资源
- 成本控制困难:无法精确控制资源使用量和成本
Kueue简介
Kueue是Kubernetes的一个子项目,专门用于工作负载队列管理。它提供了以下核心功能:
- 工作负载队列管理
- 资源配额和限制
- 优先级调度
- 多租户资源隔离
- 自动资源回收
Ray Operator简介
Ray是一个开源的分布式计算框架,特别适合AI和机器学习工作负载。Ray Operator为Kubernetes提供了原生的Ray集群管理能力:
- Ray集群的声明式管理
- 自动扩缩容
- 资源优化
- 故障恢复
架构设计
整体架构图
┌─────────────────────────────────────────────────────────────┐
│ Kubernetes Cluster │
├─────────────────────────────────────────────────────────────┤
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Kueue │ │ Ray Operator│ │ Workload │ │
│ │ Controller │ │ │ │ Manager │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
│ │ │ │ │
│ ▼ ▼ ▼ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Queue │ │ RayCluster │ │ Job/Workload│ │
│ │ Manager │ │ CRD │ │ CRD │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
└─────────────────────────────────────────────────────────────┘
核心组件交互流程
- 用户提交AI训练任务到Kueue队列
- Kueue根据资源配额和优先级进行调度
- Ray Operator创建和管理Ray集群实例
- 训练任务在Ray集群中执行
- 自动扩缩容根据负载动态调整资源
环境准备
前置条件
- Kubernetes集群(v1.21+)
- kubectl命令行工具
- Helm 3.x
- 基础的Kubernetes操作经验
安装Kueue
# 添加Kueue Helm仓库
helm repo add kueue https://kubernetes-sigs.github.io/kueue
helm repo update
# 安装Kueue
helm install kueue kueue/kueue --namespace kueue-system --create-namespace
# 验证安装
kubectl get pods -n kueue-system
安装Ray Operator
# 添加Ray Helm仓库
helm repo add ray https://ray-project.github.io/kuberay-helm/
helm repo update
# 安装Ray Operator
helm install kuberay-operator ray/kuberay-operator --namespace ray-system --create-namespace
# 验证安装
kubectl get pods -n ray-system
配置资源配额
创建ClusterQueue
ClusterQueue定义了集群级别的资源配额和调度策略:
apiVersion: kueue.x-k8s.io/v1beta1
kind: ClusterQueue
metadata:
name: ai-training-cq
spec:
namespaceSelector: {} # 匹配所有命名空间
resourceGroups:
- coveredResources: ["cpu", "memory", "nvidia.com/gpu"]
flavors:
- name: "default-flavor"
resources:
- name: "cpu"
nominalQuota: 32
- name: "memory"
nominalQuota: 128Gi
- name: "nvidia.com/gpu"
nominalQuota: 8
admissionChecks:
- name: "autoscaling"
创建LocalQueue
LocalQueue为特定命名空间提供资源配额:
apiVersion: kueue.x-k8s.io/v1beta1
kind: LocalQueue
metadata:
namespace: ai-training
name: training-lq
spec:
clusterQueue: ai-training-cq
Ray集群配置
创建RayCluster模板
apiVersion: ray.io/v1
kind: RayCluster
metadata:
name: ai-training-cluster
spec:
rayVersion: '2.9.0'
# Head node配置
headGroupSpec:
rayStartParams:
dashboard-host: "0.0.0.0"
num-cpus: "2"
template:
spec:
containers:
- name: ray-head
image: rayproject/ray:2.9.0-py310
ports:
- containerPort: 6379
name: gcs
- containerPort: 8265
name: dashboard
- containerPort: 10001
name: client
lifecycle:
preStop:
exec:
command: ["/bin/sh", "-c", "ray stop"]
resources:
requests:
cpu: 2
memory: 4Gi
limits:
cpu: 2
memory: 4Gi
# Worker节点配置
workerGroupSpecs:
- groupName: small-group
replicas: 2
minReplicas: 0
maxReplicas: 10
rayStartParams:
num-cpus: "4"
template:
spec:
containers:
- name: ray-worker
image: rayproject/ray:2.9.0-py310
lifecycle:
preStop:
exec:
command: ["/bin/sh", "-c", "ray stop"]
resources:
requests:
cpu: 4
memory: 8Gi
limits:
cpu: 4
memory: 8Gi
AI训练任务部署
创建RayJob
RayJob是专门为AI训练任务设计的CRD:
apiVersion: ray.io/v1
kind: RayJob
metadata:
name: ai-training-job
spec:
entrypoint: python /home/ray/train_model.py
runtimeEnv:
working_dir: "s3://my-bucket/training-code/"
pip: ["torch==2.0.0", "transformers==4.30.0"]
rayClusterSpec:
rayVersion: '2.9.0'
headGroupSpec:
rayStartParams:
dashboard-host: "0.0.0.0"
template:
spec:
containers:
- name: ray-head
image: rayproject/ray:2.9.0-py310
resources:
requests:
cpu: 1
memory: 2Gi
limits:
cpu: 1
memory: 2Gi
workerGroupSpecs:
- groupName: gpu-workers
replicas: 0
minReplicas: 0
maxReplicas: 4
rayStartParams:
num-gpus: "1"
template:
spec:
containers:
- name: ray-worker
image: rayproject/ray:2.9.0-py310-gpu
resources:
requests:
cpu: 2
memory: 8Gi
nvidia.com/gpu: 1
limits:
cpu: 2
memory: 8Gi
nvidia.com/gpu: 1
集成Kueue调度
通过在RayJob中添加Kueue注解来启用队列调度:
apiVersion: ray.io/v1
kind: RayJob
metadata:
name: ai-training-job-with-queue
annotations:
kueue.x-k8s.io/queue-name: training-lq
spec:
# ... 其他配置保持不变
suspend: true # 初始状态为挂起,等待Kueue调度
自动扩缩容配置
基于指标的扩缩容
配置HPA(Horizontal Pod Autoscaler)来实现自动扩缩容:
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: ray-worker-hpa
spec:
scaleTargetRef:
apiVersion: ray.io/v1
kind: RayCluster
name: ai-training-cluster
minReplicas: 1
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
自定义扩缩容策略
创建自定义的扩缩容策略:
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: custom-ray-hpa
spec:
scaleTargetRef:
apiVersion: ray.io/v1
kind: RayCluster
name: ai-training-cluster
minReplicas: 2
maxReplicas: 20
behavior:
scaleDown:
stabilizationWindowSeconds: 300
policies:
- type: Percent
value: 10
periodSeconds: 60
scaleUp:
stabilizationWindowSeconds: 60
policies:
- type: Percent
value: 50
periodSeconds: 60
metrics:
- type: Pods
pods:
metric:
name: ray_task_queue_length
target:
type: AverageValue
averageValue: "5"
监控和日志
Prometheus监控配置
配置ServiceMonitor来收集Ray集群指标:
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: ray-cluster-monitor
labels:
app: ray-cluster
spec:
selector:
matchLabels:
ray.io/cluster: ai-training-cluster
endpoints:
- port: dashboard
path: /metrics
interval: 30s
日志收集配置
配置Fluentd或类似工具来收集训练日志:
apiVersion: v1
kind: ConfigMap
metadata:
name: fluentd-config
data:
fluent.conf: |
<source>
@type tail
path /var/log/containers/ray-*.log
pos_file /var/log/fluentd-ray.pos
tag ray.*
<parse>
@type json
time_key time
time_format %Y-%m-%dT%H:%M:%S.%NZ
</parse>
</source>
<match ray.**>
@type elasticsearch
host elasticsearch
port 9200
logstash_format true
</match>
最佳实践
资源规划建议
- CPU和内存分配:为head节点分配足够的资源,worker节点根据训练需求调整
- GPU资源管理:使用资源配额严格控制GPU使用
- 存储优化:使用持久化存储来保存训练数据和模型
安全配置
apiVersion: v1
kind: Secret
metadata:
name: training-secrets
type: Opaque
data:
api-key: <base64-encoded-api-key>
database-password: <base64-encoded-password>
---
apiVersion: ray.io/v1
kind: RayJob
metadata:
name: secure-training-job
spec:
# ... 其他配置
rayClusterSpec:
workerGroupSpecs:
- # ... worker配置
template:
spec:
containers:
- name: ray-worker
# ... 其他配置
envFrom:
- secretRef:
name: training-secrets
故障恢复策略
配置PodDisruptionBudget来保证集群稳定性:
apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:
name: ray-head-pdb
spec:
minAvailable: 1
selector:
matchLabels:
ray.io/node-type: head
性能优化
网络优化
apiVersion: ray.io/v1
kind: RayCluster
metadata:
name: optimized-ray-cluster
spec:
# ... 其他配置
headGroupSpec:
template:
spec:
containers:
- name: ray-head
# ... 其他配置
env:
- name: RAY_DISABLE_DOCKER_CPU_WARNING
value: "1"
- name: RAY_memory_monitor_refresh_ms
value: "0"
存储优化
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: training-data-pvc
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 100Gi
storageClassName: fast-ssd
---
apiVersion: ray.io/v1
kind: RayJob
metadata:
name: optimized-training-job
spec:
# ... 其他配置
rayClusterSpec:
workerGroupSpecs:
- # ... worker配置
template:
spec:
volumes:
- name: training-data
persistentVolumeClaim:
claimName: training-data-pvc
containers:
- name: ray-worker
# ... 其他配置
volumeMounts:
- name: training-data
mountPath: /data
故障排除
常见问题诊断
- 资源不足:检查ClusterQueue配额和实际使用情况
- 调度失败:查看Kueue控制器日志和事件
- 训练卡顿:检查Ray集群状态和资源使用率
监控命令
# 查看Kueue状态
kubectl get clusterqueues
kubectl get localqueues -A
kubectl get workloads -A
# 查看Ray集群状态
kubectl get rayclusters -A
kubectl get rayjobs -A
# 查看资源使用情况
kubectl top nodes
kubectl top pods -A
日志查看
# 查看Kueue控制器日志
kubectl logs -n kueue-system deployment/kueue-controller-manager
# 查看Ray Operator日志
kubectl logs -n ray-system deployment/kuberay-operator
# 查看Ray集群日志
kubectl logs -l ray.io/cluster=ai-training-cluster
高级特性
多租户支持
配置多租户环境下的资源隔离:
apiVersion: kueue.x-k8s.io/v1beta1
kind: ClusterQueue
metadata:
name: team-a-cq
spec:
namespaceSelector:
matchLabels:
team: team-a
resourceGroups:
- coveredResources: ["cpu", "memory"]
flavors:
- name: "team-a-flavor"
resources:
- name: "cpu"
nominalQuota: 16
- name: "memory"
nominalQuota: 64Gi
---
apiVersion: kueue.x-k8s.io/v1beta1
kind: ClusterQueue
metadata:
name: team-b-cq
spec:
namespaceSelector:
matchLabels:
team: team-b
resourceGroups:
- coveredResources: ["cpu", "memory"]
flavors:
- name: "team-b-flavor"
resources:
- name: "cpu"
nominalQuota: 16
- name: "memory"
nominalQuota: 64Gi
优先级调度
配置不同优先级的训练任务:
apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
name: high-priority
value: 1000000
globalDefault: false
description: "High priority AI training jobs"
---
apiVersion: ray.io/v1
kind: RayJob
metadata:
name: high-priority-training
spec:
# ... 其他配置
template:
spec:
priorityClassName: high-priority
成本优化
Spot实例使用
配置使用Spot实例来降低成本:
apiVersion: ray.io/v1
kind: RayCluster
metadata:
name: cost-optimized-cluster
spec:
workerGroupSpecs:
- groupName: spot-workers
replicas: 0
minReplicas: 0
maxReplicas: 20
template:
spec:
nodeSelector:
kubernetes.io/instance-type: spot
tolerations:
- key: spot
operator: Equal
value: "true"
effect: NoSchedule
资源回收策略
配置资源回收来优化成本:
apiVersion: kueue.x-k8s.io/v1beta1
kind: ClusterQueue
metadata:
name: cost-aware-cq
spec:
# ... 其他配置
preemption:
reclaimWithinCohort: Never
withinClusterQueue: LowerPriority
总结
通过将Kueue和Ray Operator结合使用,我们可以构建一个强大而灵活的AI训练平台。这种组合提供了以下关键优势:
- 资源高效利用:通过队列管理和配额控制,最大化资源利用率
- 弹性扩缩容:根据实际负载动态调整资源,降低成本
- 多租户支持:为不同团队提供资源隔离和公平调度
- 成本控制:通过精细化的资源管理和调度策略控制成本
在实际部署中,建议根据具体的业务需求和资源情况来调整配置参数,并建立完善的监控和告警机制来确保系统的稳定运行。
随着云原生AI技术的不断发展,Kueue和Ray Operator的结合将为AI应用部署提供更加成熟和可靠的解决方案,推动AI训练向更加自动化、智能化的方向发展。
评论 (0)