模型部署自动化流程实践
在AI模型生产环境中,自动化部署流程是提升效率、降低人为错误的关键。本文分享一个完整的模型部署自动化方案。
核心架构
采用GitLab CI/CD + Docker + Kubernetes的组合方案,实现从代码提交到生产部署的全流程自动化。
部署流程步骤
- 代码提交触发CI
# .gitlab-ci.yml
stages:
- build
- test
- deploy
build_model:
stage: build
script:
- docker build -t model-image:latest .
- docker tag model-image:latest registry.example.com/model-image:latest
- docker push registry.example.com/model-image:latest
- 模型测试验证
# test_model.py
import unittest
import numpy as np
from model import Model
class TestModel(unittest.TestCase):
def setUp(self):
self.model = Model()
def test_prediction(self):
input_data = np.array([[1.0, 2.0, 3.0]])
result = self.model.predict(input_data)
self.assertIsNotNone(result)
self.assertEqual(len(result), 1)
- Kubernetes部署脚本
# deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: model-deployment
spec:
replicas: 3
selector:
matchLabels:
app: model
template:
metadata:
labels:
app: model
spec:
containers:
- name: model-container
image: registry.example.com/model-image:latest
ports:
- containerPort: 8000
通过该自动化流程,可实现模型版本控制、持续集成和一键部署,显著提升模型交付效率。

讨论