在大模型推理服务中,容错机制是保障系统稳定性和用户体验的关键环节。本文将从架构设计角度探讨如何构建一个健壮的模型推理服务容错体系。
容错机制的核心要素
1. 请求重试机制
import time
import random
from functools import wraps
def retry(max_attempts=3, backoff_factor=1):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
for attempt in range(max_attempts):
try:
return func(*args, **kwargs)
except Exception as e:
if attempt == max_attempts - 1:
raise e
sleep_time = backoff_factor * (2 ** attempt) + random.uniform(0, 1)
time.sleep(sleep_time)
return wrapper
return decorator
2. 熔断机制
import time
from collections import defaultdict
class CircuitBreaker:
def __init__(self, failure_threshold=5, timeout=60):
self.failure_threshold = failure_threshold
self.timeout = timeout
self.failure_count = 0
self.last_failure_time = None
self.state = "CLOSED"
def call(self, func, *args, **kwargs):
if self.state == "OPEN":
if time.time() - self.last_failure_time > self.timeout:
self.state = "HALF_OPEN"
else:
raise Exception("Circuit breaker is OPEN")
try:
result = func(*args, **kwargs)
self.failure_count = 0
self.state = "CLOSED"
return result
except Exception as e:
self.failure_count += 1
self.last_failure_time = time.time()
if self.failure_count >= self.failure_threshold:
self.state = "OPEN"
raise e
实际部署建议
在生产环境中,建议将容错机制与负载均衡器结合使用,通过监控指标动态调整重试策略。同时,建立完善的日志记录和告警系统,确保问题能够及时发现和处理。

讨论