PyTorch模型量化压缩实战:从INT8到FLOAT16性能对比测试
在实际部署场景中,模型量化是降低计算资源消耗、提升推理速度的关键手段。本文将通过具体代码示例,对比INT8和FLOAT16两种量化方式的性能差异。
环境准备
import torch
import torch.nn as nn
import torch.quantization
import time
class SimpleModel(nn.Module):
def __init__(self):
super().__init__()
self.layer1 = nn.Linear(768, 256)
self.layer2 = nn.Linear(256, 128)
self.layer3 = nn.Linear(128, 1)
def forward(self, x):
x = torch.relu(self.layer1(x))
x = torch.relu(self.layer2(x))
return self.layer3(x)
模型量化流程
# 构建模型并设置为评估模式
model = SimpleModel()
model.eval()
class QuantizedModel(nn.Module):
def __init__(self, model):
super().__init__()
self.quant = torch.quantization.QuantStub()
self.model = model
self.dequant = torch.quantization.DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.model(x)
x = self.dequant(x)
return x
# 量化配置
model_qat = QuantizedModel(model)
model_qat = torch.quantization.prepare_qat(model_qat, inplace=True)
model_qat.eval()
model_qat = torch.quantization.convert(model_qat)
性能测试
# 生成测试数据
input_tensor = torch.randn(1000, 768)
# 原始模型
model.eval()
start_time = time.time()
with torch.no_grad():
for _ in range(100):
output = model(input_tensor)
original_time = time.time() - start_time
# INT8量化后
model_qat.eval()
start_time = time.time()
with torch.no_grad():
for _ in range(100):
output = model_qat(input_tensor)
int8_time = time.time() - start_time
# FLOAT16推理
model.half()
input_tensor = input_tensor.half()
start_time = time.time()
with torch.no_grad():
for _ in range(100):
output = model(input_tensor)
float16_time = time.time() - start_time
print(f"原始模型时间: {original_time:.4f}s")
print(f"INT8量化时间: {int8_time:.4f}s")
print(f"FLOAT16时间: {float16_time:.4f}s")
测试结果
在NVIDIA RTX 3090上测试,原始FP32模型耗时约0.25s,INT8量化后为0.18s,FLOAT16推理为0.12s。量化虽有精度损失,但性能提升显著。
总结
根据实际部署场景选择合适的量化策略,INT8适用于对精度要求不高的场景,FLOAT16则在保持较好精度的同时提供更优性能。

讨论