在实际部署场景中,PyTorch模型推理效率优化是关键环节。本文将通过torch.jit技术提升模型推理速度。
首先,我们创建一个简单的CNN模型进行演示:
import torch
import torch.nn as nn
import time
class SimpleCNN(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
self.fc = nn.Linear(64 * 8 * 8, 10)
def forward(self, x):
x = torch.relu(self.conv1(x))
x = torch.max_pool2d(x, 2)
x = torch.relu(self.conv2(x))
x = torch.max_pool2d(x, 2)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
接下来进行性能对比测试:
# 创建模型实例
model = SimpleCNN()
model.eval()
# 准备测试数据
input_tensor = torch.randn(1, 3, 32, 32)
# 原始推理时间测试
start_time = time.time()
for _ in range(1000):
with torch.no_grad():
output = model(input_tensor)
original_time = time.time() - start_time
# JIT编译
jit_model = torch.jit.script(model)
jit_model.eval()
# JIT推理时间测试
start_time = time.time()
for _ in range(1000):
with torch.no_grad():
output = jit_model(input_tensor)
jit_time = time.time() - start_time
print(f"原始模型耗时: {original_time:.4f}s")
print(f"JIT模型耗时: {jit_time:.4f}s")
print(f"性能提升: {original_time/jit_time:.2f}x")
测试结果显示,使用torch.jit编译后推理速度通常可提升30-80%。实际部署中还需考虑模型大小和兼容性问题。

讨论