Kubernetes TensorFlow服务部署调试
在Kubernetes环境中部署TensorFlow服务需要考虑容器化和负载均衡配置。首先创建Docker镜像:
FROM tensorflow/serving:latest
COPY model /models/model
EXPOSE 8501
ENTRYPOINT ["tensorflow_model_server"]
CMD ["--model_base_path=/models/model"]
部署到Kubernetes集群:
apiVersion: apps/v1
kind: Deployment
metadata:
name: tensorflow-serving
spec:
replicas: 3
selector:
matchLabels:
app: tensorflow-serving
template:
metadata:
labels:
app: tensorflow-serving
spec:
containers:
- name: tensorflow-serving
image: your-registry/tensorflow-serving:latest
ports:
- containerPort: 8501
resources:
requests:
memory: "256Mi"
cpu: "250m"
limits:
memory: "512Mi"
cpu: "500m"
---
apiVersion: v1
kind: Service
metadata:
name: tensorflow-service
spec:
selector:
app: tensorflow-serving
ports:
- port: 8501
targetPort: 8501
type: LoadBalancer
配置负载均衡:
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: tensorflow-ingress
annotations:
nginx.ingress.kubernetes.io/rewrite-target: /
spec:
rules:
- host: model.example.com
http:
paths:
- path: /predict
backend:
service:
name: tensorflow-service
port:
number: 8501
调试时可通过kubectl logs查看容器日志,使用kubectl port-forward进行本地测试。建议配置健康检查探针确保服务可用性。

讨论