Kubernetes Tensorflow服务自动部署:从Docker到负载均衡的完整实践
在现代AI应用架构中,TensorFlow Serving已成为模型部署的标准方案。本文将通过Kubernetes环境,演示如何实现TensorFlow服务的自动化部署,并集成Docker容器化和负载均衡配置。
1. Docker容器化构建
首先创建TensorFlow Serving的Dockerfile:
FROM tensorflow/serving:latest
# 复制模型文件到容器
COPY model /models/model
RUN mkdir -p /models/model && \
cp -r /model/* /models/model/
# 暴露端口
EXPOSE 8500 8501
构建镜像:
sudo docker build -t tensorflow-serving:latest .
2. Kubernetes部署配置
创建Deployment配置文件:
apiVersion: apps/v1
kind: Deployment
metadata:
name: tensorflow-serving
spec:
replicas: 3
selector:
matchLabels:
app: tensorflow-serving
template:
metadata:
labels:
app: tensorflow-serving
spec:
containers:
- name: serving
image: tensorflow-serving:latest
ports:
- containerPort: 8500
- containerPort: 8501
resources:
requests:
memory: "256Mi"
cpu: "250m"
limits:
memory: "512Mi"
cpu: "500m"
3. 负载均衡配置
通过Service实现负载均衡:
apiVersion: v1
kind: Service
metadata:
name: tensorflow-serving-service
spec:
selector:
app: tensorflow-serving
ports:
- port: 8500
targetPort: 8500
protocol: TCP
name: grpc
- port: 8501
targetPort: 8501
protocol: TCP
name: http
type: LoadBalancer
4. 部署验证
应用配置并验证:
kubectl apply -f deployment.yaml
kubectl apply -f service.yaml
kubectl get svc tensorflow-serving-service
最终,通过负载均衡器的外部IP即可访问TensorFlow服务,实现高可用部署。

讨论