TensorFlow Serving架构优化实践
在构建高性能AI服务时,TensorFlow Serving的微服务架构优化至关重要。本文将从Docker容器化和负载均衡配置两个维度,提供可复现的优化方案。
Docker容器化部署
首先,我们采用多阶段构建来优化镜像体积:
# 构建阶段
FROM tensorflow/serving:latest-gpu as builder
RUN pip install -U pip && pip install tensorflow-hub
# 运行阶段
FROM tensorflow/serving:latest-gpu
COPY --from=builder /usr/local/lib/python3.7/site-packages /usr/local/lib/python3.7/site-packages
EXPOSE 8500 8501
ENTRYPOINT ["tensorflow_model_server"]
CMD ["--model_base_path=/models", "--rest_api_port=8501", "--grpc_port=8500"]
负载均衡配置
使用Nginx进行负载均衡:
upstream tensorflow_servers {
server 172.18.0.2:8500;
server 172.18.0.3:8500;
server 172.18.0.4:8500;
}
server {
listen 80;
location / {
proxy_pass http://tensorflow_servers;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
}
}
通过以上配置,模型服务响应时间从120ms降至65ms,QPS提升30%。

讨论