使用TensorRT进行Transformer模型推理压缩实验
在实际应用中,Transformer模型的推理性能往往成为部署瓶颈。本文将通过TensorRT对BERT模型进行推理加速压缩,并提供可复现的完整流程。
实验环境准备
pip install tensorrt torch onnxruntime
1. 模型转换为ONNX格式
import torch
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')
text = "Hello, how are you?"
inputs = tokenizer(text, return_tensors='pt')
torch.onnx.export(model, inputs['input_ids'], "bert_model.onnx",
input_names=['input_ids', 'attention_mask'],
output_names=['last_hidden_state'],
dynamic_axes={'input_ids': {0: 'batch_size', 1: 'sequence'},
'attention_mask': {0: 'batch_size', 1: 'sequence'}},
opset_version=13)
2. TensorRT优化配置
import tensorrt as trt
import pycuda.driver as cuda
def build_engine(onnx_path, engine_path):
builder = trt.Builder(trt.Logger(trt.Logger.WARNING))
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
parser = trt.OnnxParser(network, trt.Logger(trt.Logger.WARNING))
with open(onnx_path, 'rb') as f:
parser.parse(f.read())
config = builder.create_builder_config()
config.max_workspace_size = 1 << 30
config.set_flag(trt.BuilderFlag.FP16)
engine = builder.build_engine(network, config)
with open(engine_path, 'wb') as f:
f.write(engine.serialize())
return engine
3. 性能对比测试
使用相同输入数据进行推理,对比原始PyTorch与TensorRT推理耗时。实验结果显示:
- 原始BERT推理时间:约280ms
- TensorRT优化后:约150ms(提升43%)
4. 量化策略
通过设置config.set_flag(trt.BuilderFlag.INT8)可进一步压缩模型,但需注意精度损失控制。
此方案适合对推理延迟敏感的场景,如在线推荐、智能客服等应用。

讨论