在LLM微调工程化实践中,模型训练监控系统是确保微调效果的关键环节。本文将对比两种主流的LoRA微调方案——基于HuggingFace Transformers的实现和基于PEFT库的Adapter方法。
LoRA微调监控方案
方案一:HuggingFace Transformers + TensorBoard
from transformers import AutoModelForCausalLM, TrainingArguments, Trainer
from peft import get_peft_model, LoraConfig
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
peft_config = LoraConfig(
r=8,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.01,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, peft_config)
training_args = TrainingArguments(
output_dir="./lora_finetuned",
logging_dir="./logs",
logging_steps=10,
save_steps=100,
report_to=["tensorboard"]
)
方案二:PEFT + 自定义监控系统
from peft import PeftModel
import torch.nn.functional as F
# 训练循环中添加监控
for step, batch in enumerate(dataloader):
outputs = model(**batch)
loss = outputs.loss
# 监控LoRA参数梯度范数
lora_grad_norm = sum(
p.grad.norm().item()
for n, p in model.named_parameters()
if 'lora' in n and p.grad is not None
)
# 记录到TensorBoard
writer.add_scalar("train/lora_grad_norm", lora_grad_norm, step)
Adapter微调监控
Adapter方法相比LoRA具有更小的参数量,但同样需要实时监控。通过自定义回调函数可实现:
- Adapter权重变化率
- 梯度流分析
- 训练稳定性评估
两种方案均支持实时监控,但PEFT方案在Adapter支持上更具优势,推荐在生产环境使用。

讨论