对称量化实现细节
对称量化是模型压缩中的核心技术,本文将详细介绍如何正确实现对称量化。
核心原理
对称量化假设权重分布关于零点对称,通过以下公式实现:
quantized_value = round(value / scale)
real_value = quantized_value * scale
其中scale = max(|weight|) / 127。
PyTorch实现示例
import torch
import torch.nn as nn
class SymmetricQuantizer:
def __init__(self, bit=8):
self.bit = bit
self.scale = None
def forward(self, weight):
# 计算scale
max_val = torch.max(torch.abs(weight))
self.scale = max_val / ((2 ** (self.bit - 1)) - 1)
# 量化
quantized = torch.round(weight / self.scale)
# 反量化
dequantized = quantized * self.scale
return dequantized
# 使用示例
weight = torch.randn(100, 100)
quantizer = SymmetricQuantizer(bit=8)
quantized_weight = quantizer(weight)
效果评估
通过MSE和精度损失评估:
mse = torch.mean((weight - quantized_weight) ** 2)
accuracy_loss = calculate_accuracy_loss(model, quantized_model)
print(f'MSE: {mse:.6f}, Accuracy Loss: {accuracy_loss:.4f}')
实际测试表明,对称量化在8位量化下可保持95%以上精度。

讨论