Kubernetes环境下模型服务资源消耗监控方案
在Kubernetes集群中部署机器学习模型服务时,资源监控是确保服务稳定运行的关键。本文提供一套完整的资源消耗监控方案。
核心监控指标配置
首先在Deployment中添加资源限制和请求配置:
apiVersion: apps/v1
kind: Deployment
metadata:
name: model-service
spec:
replicas: 3
selector:
matchLabels:
app: model-service
template:
metadata:
labels:
app: model-service
spec:
containers:
- name: model-container
image: model-service:latest
resources:
requests:
memory: "512Mi"
cpu: "250m"
limits:
memory: "1Gi"
cpu: "500m"
Prometheus监控配置
创建Prometheus服务监控规则:
rule_files:
- model_rules.yml
groups:
- name: model_metrics
rules:
- alert: HighCPUUsage
expr: rate(container_cpu_usage_seconds_total{container="model-container"}[5m]) > 0.4
for: 2m
labels:
severity: warning
annotations:
summary: "High CPU usage detected"
description: "Container CPU usage is {{ $value }} over 5 minutes"
告警配置方案
在Grafana中创建监控面板,包含以下指标:
- CPU使用率(container_cpu_usage_seconds_total)
- 内存使用率(container_memory_usage_bytes)
- 网络输入/输出速率
告警阈值设置:
- CPU超过40%持续2分钟触发警告
- 内存超过80%立即触发告警
- 请求延迟超过500ms触发警告
通过kubectl命令验证配置:kubectl get pods -l app=model-service

讨论