模型服务资源瓶颈识别监控
监控指标配置
CPU使用率监控
# Prometheus监控配置
- job_name: 'model_service'
metrics_path: '/metrics'
static_configs:
- targets: ['localhost:8080']
metrics_path: /metrics
scrape_interval: 15s
# 关键指标采集
# model_cpu_usage_percent
# model_memory_usage_mb
# model_gpu_utilization
内存监控配置
# 监控阈值设置
memory_threshold: 80% # 告警阈值
memory_warning: 70% # 预警阈值
# Docker容器资源限制
resources:
memory_limit: "2G"
cpu_quota: 100000
告警配置方案
Prometheus告警规则
# alerts.yml
groups:
- name: model_bottleneck
rules:
- alert: HighCPUUsage
expr: rate(container_cpu_usage_seconds_total[5m]) > 0.8
for: 5m
labels:
severity: critical
annotations:
summary: "模型服务CPU使用率过高"
description: "当前CPU使用率达到{{ $value }}%"
- alert: MemoryBottleneck
expr: container_memory_usage_bytes / container_spec_memory_limit_bytes > 0.8
for: 3m
labels:
severity: warning
annotations:
summary: "模型服务内存瓶颈"
description: "内存使用率超过80%"
复现步骤
- 部署监控服务
kubectl apply -f prometheus-deployment.yaml
kubectl apply -f model-service.yaml
- 配置告警规则
kubectl create configmap alert-rules --from-file=alerts.yml
kubectl apply -f alertmanager-config.yaml
- 触发测试告警
# 模拟内存占用
import psutil
import time
while True:
# 模拟高内存使用
memory = psutil.virtual_memory()
if memory.percent > 80:
print(f"High memory usage: {memory.percent}%")
time.sleep(1)
- 验证告警
kubectl get pods -n monitoring
kubectl logs -n monitoring prometheus-0
关键监控点
- CPU峰值检测:连续5分钟CPU使用率超过80%
- 内存泄漏检测:内存使用率持续增长趋势
- GPU资源监控:NVIDIA GPU利用率监控
通过上述配置,可实现对模型服务的实时资源瓶颈识别,提前预警潜在性能问题。

讨论