基于容器化部署的模型监控方案
监控指标体系
在容器化部署环境中,建立以下核心监控指标:
- 模型推理延迟:
model_inference_duration_seconds(95%分位数),阈值设置为200ms - CPU使用率:
container_cpu_usage_percentage,超过85%触发告警 - 内存使用率:
container_memory_usage_bytes,超过70%触发告警 - 模型准确率下降:
model_accuracy_drop_rate,连续3次检测到准确率下降超过2%时告警 - 数据漂移检测:
data_drift_score,阈值0.3
Prometheus配置示例
scrape_configs:
- job_name: 'model_monitor'
static_configs:
- targets: ['localhost:8080']
metrics_path: '/metrics'
scrape_interval: 15s
告警规则配置
在Alertmanager中添加:
route:
group_by: ['alertname']
group_wait: 30s
group_interval: 5m
repeat_interval: 3h
receivers:
- name: 'email'
email_configs:
- to: 'devops@company.com'
send_resolved: true
rules:
- alert: 'ModelLatencyHigh'
expr: histogram_quantile(0.95, sum(rate(model_inference_duration_seconds_bucket[5m])) by (le)) > 0.2
for: 2m
labels:
severity: critical
annotations:
summary: "模型延迟过高"
部署脚本
kubectl apply -f prometheus-deployment.yaml
kubectl apply -f alertmanager-config.yaml
kubectl apply -f model-monitor-service.yaml
通过以上配置,实现对模型运行时性能的实时监控与自动告警。

讨论