模型服务错误码异常监控机制

Bella965 +0/-0 0 0 正常 2025-12-24T07:01:19 DevOps · 模型监控

模型服务错误码异常监控机制

在ML服务运行时监控中,错误码异常是核心监控指标之一。基于Prometheus监控体系,我们通过以下方式实现错误码异常监控:

核心监控指标配置

# prometheus.yml 配置片段
- job_name: 'ml-model-service'
  metrics_path: '/metrics'
  static_configs:
    - targets: ['localhost:8080']
  metric_relabel_configs:
    # 错误码分类监控
    - source_labels: [__name__]
      regex: 'model_request_errors_total'
      target_label: error_code
      replacement: '${1}'

实际代码实现

from prometheus_client import Counter, Histogram
import logging

# 定义错误码监控指标
error_counter = Counter(
    'model_request_errors_total',
    'Total number of request errors by error code',
    ['error_code', 'service_name']
)

# 错误码异常告警规则
ALERTS:
  model_error_rate_high:
    expr: rate(model_request_errors_total[5m]) > 0.1
    for: 2m
    labels:
      severity: critical
      service: ml-model-service
    annotations:
      summary: "High error rate detected"
      description: "Error rate is {{ $value }} per second"

告警配置步骤

  1. 在Prometheus中添加告警规则:model_error_rate_high
  2. 配置Alertmanager接收器,通过钉钉/微信推送告警
  3. 设置阈值:5分钟内错误率超过0.1次/秒触发告警

可复现验证

# 模拟错误请求
for i in {1..10}; do
  curl -X POST http://localhost:8080/predict -d '{"data": "invalid"}'
  sleep 1
  done
推广
广告位招租

讨论

0/2000