模型服务错误码异常监控机制
在ML服务运行时监控中,错误码异常是核心监控指标之一。基于Prometheus监控体系,我们通过以下方式实现错误码异常监控:
核心监控指标配置
# prometheus.yml 配置片段
- job_name: 'ml-model-service'
metrics_path: '/metrics'
static_configs:
- targets: ['localhost:8080']
metric_relabel_configs:
# 错误码分类监控
- source_labels: [__name__]
regex: 'model_request_errors_total'
target_label: error_code
replacement: '${1}'
实际代码实现
from prometheus_client import Counter, Histogram
import logging
# 定义错误码监控指标
error_counter = Counter(
'model_request_errors_total',
'Total number of request errors by error code',
['error_code', 'service_name']
)
# 错误码异常告警规则
ALERTS:
model_error_rate_high:
expr: rate(model_request_errors_total[5m]) > 0.1
for: 2m
labels:
severity: critical
service: ml-model-service
annotations:
summary: "High error rate detected"
description: "Error rate is {{ $value }} per second"
告警配置步骤
- 在Prometheus中添加告警规则:
model_error_rate_high - 配置Alertmanager接收器,通过钉钉/微信推送告警
- 设置阈值:5分钟内错误率超过0.1次/秒触发告警
可复现验证
# 模拟错误请求
for i in {1..10}; do
curl -X POST http://localhost:8080/predict -d '{"data": "invalid"}'
sleep 1
done

讨论