模型推理时间波动率监控方案
背景
在生产环境中,模型推理时间的稳定性直接影响用户体验和系统资源利用率。当推理时间出现异常波动时,可能预示着模型性能下降、硬件资源瓶颈或数据倾斜问题。
核心指标定义
推理时间波动率 = 标准差 / 平均值
- 基线值:正常情况下波动率 < 5%
- 告警阈值:
- 轻微告警:波动率 > 5% 且 ≤ 10%
- 严重告警:波动率 > 10%
监控实现方案
import numpy as np
from prometheus_client import Histogram, Gauge
import time
# 定义监控指标
inference_duration = Histogram('model_inference_seconds', '模型推理时间', buckets=[0.1, 0.5, 1.0, 2.0, 5.0])
# 记录推理时间
start_time = time.time()
# 模型推理逻辑
result = model.predict(input_data)
inference_time = time.time() - start_time
inference_duration.observe(inference_time)
# 波动率计算
def calculate_variance_rate(window_size=100):
# 获取最近window_size个样本
samples = inference_duration._samples[-window_size:]
durations = [sample[2] for sample in samples]
if len(durations) < 2:
return 0.0
avg = np.mean(durations)
std = np.std(durations)
variance_rate = (std / avg) * 100 if avg > 0 else 0.0
# 记录波动率指标
variance_gauge.set(variance_rate)
return variance_rate
告警配置
在Prometheus中配置告警规则:
# prometheus.yml
rule_files:
- model_alerts.yml
# model_alerts.yml
groups:
- name: model_performance
rules:
- alert: HighInferenceVariance
expr: rate(model_inference_seconds_sum[5m]) / rate(model_inference_seconds_count[5m]) > 0.1
for: 2m
labels:
severity: warning
annotations:
summary: "模型推理时间波动率过高"
description: "推理时间波动率超过阈值,当前值为 {{ $value }}"
实施步骤
- 部署监控指标收集组件
- 配置Prometheus抓取规则
- 设置钉钉/企业微信告警通知
- 建立自动化故障排查流程

讨论