机器学习模型内存泄漏检测与性能优化
内存泄漏监测方案
1. 关键监控指标配置
- RSS内存使用量(
memory.rss):持续增长超过基准值20%触发告警 - 垃圾回收频率(
gc.collections):每分钟GC次数超过5次需关注 - Python对象计数(
objects.count):对象数量持续增加且不释放
2. 监控脚本实现
import psutil
import gc
import time
from datetime import datetime
class ModelMonitor:
def __init__(self):
self.process = psutil.Process()
self.baseline_memory = None
def check_memory_leak(self):
current_memory = self.process.memory_info().rss
if not self.baseline_memory:
self.baseline_memory = current_memory
return False
memory_growth = (current_memory - self.baseline_memory) / self.baseline_memory
if memory_growth > 0.2: # 20%增长阈值
self.alert("Memory Leak Detected", f"Memory increased by {memory_growth:.2%}")
return True
return False
# 配置监控循环
monitor = ModelMonitor()
while True:
monitor.check_memory_leak()
time.sleep(60)
3. 告警配置方案
- 阈值告警:内存增长超过20%时发送邮件通知
- 持续告警:连续5次检测到异常则升级为紧急告警
- 自动重启:连续3次告警后自动重启模型服务
性能优化策略
通过py-spy工具进行性能分析,定位CPU热点函数:
# 安装工具
pip install py-spy
# 分析进程ID为1234的模型进程
py-spy top --pid 1234
# 导出火焰图
py-spy dump --pid 1234 --output profile.svg
配置Prometheus监控指标:
# prometheus.yml
scrape_configs:
- job_name: 'ml_model'
static_configs:
- targets: ['localhost:8000']
metrics_path: '/metrics'
在模型服务中添加指标收集:
from prometheus_client import Counter, Histogram
inference_counter = Counter('model_inferences_total', 'Total model inferences')
inference_time = Histogram('model_inference_seconds', 'Inference time')
@app.route('/predict')
def predict():
with inference_time.time():
result = model.predict(data)
inference_counter.inc()
return result

讨论