模型数据完整性验证与异常告警机制
核心监控指标配置
输入数据完整性监控:
- 缺失值率:设置阈值为5%,当单个字段缺失率超过此值时触发告警
- 数据类型一致性:验证数值型字段是否为float/int,字符串字段是否为str
- 范围验证:如年龄字段应在[0,150]范围内,超出范围的样本标记为异常
实施步骤
import pandas as pd
import numpy as np
from datetime import datetime
# 数据完整性检查类
class DataIntegrityChecker:
def __init__(self):
self.alert_thresholds = {
'missing_rate': 0.05,
'data_type_violation': 0.02
}
def validate_input(self, df):
results = {}
# 检查缺失值
missing_rates = df.isnull().sum() / len(df)
results['missing_rate'] = missing_rates.to_dict()
# 数据类型验证
for col in df.columns:
if df[col].dtype == 'object':
# 字符串类型验证
if not df[col].apply(lambda x: isinstance(x, str)).all():
results['data_type_violation'] = True
break
return results
# 告警配置示例
checker = DataIntegrityChecker()
# 监控数据
monitor_data = pd.DataFrame({
'age': [25, 30, None, 45],
'name': ['Alice', 'Bob', 'Charlie', 'David']
})
results = checker.validate_input(monitor_data)
print(results)
告警规则配置
告警级别:
- 严重级别:缺失率>5% 或数据类型错误
- 警告级别:单个样本超出正常范围
告警触发条件:
alert_rules:
- name: "high_missing_rate"
threshold: 0.05
condition: "missing_rate > threshold"
severity: "critical"
notify_channels: ["slack", "email"]
- name: "data_type_violation"
condition: "data_type_violation == True"
severity: "warning"
notify_channels: ["slack"]
通过上述配置,可实现对模型输入数据的实时完整性监控和异常告警。

讨论