模型推理准确率变化趋势监控
在机器学习模型生产环境中,准确率是最重要的评估指标之一。本文将详细介绍如何构建准确率变化趋势监控系统。
核心监控指标设置
首先需要定义关键指标:
- 整体准确率:
accuracy = (TP + TN) / (TP + TN + FP + FN) - 类别准确率:针对每个类别单独计算
- 准确率变化率:
change_rate = (current_accuracy - previous_accuracy) / previous_accuracy - 准确率波动标准差:衡量稳定性
实现方案
使用Prometheus + Grafana组合进行监控,配置代码如下:
from prometheus_client import Gauge, Histogram
import time
class ModelMonitor:
def __init__(self):
self.accuracy_gauge = Gauge('model_accuracy', 'Current model accuracy', ['model_name'])
self.accuracy_change = Gauge('accuracy_change_rate', 'Accuracy change rate', ['model_name'])
def update_metrics(self, model_name, current_accuracy, previous_accuracy):
self.accuracy_gauge.labels(model_name=model_name).set(current_accuracy)
if previous_accuracy > 0:
change_rate = (current_accuracy - previous_accuracy) / previous_accuracy
self.accuracy_change.labels(model_name=model_name).set(change_rate)
告警配置
在Prometheus告警规则文件中添加:
groups:
- name: model-alerts
rules:
- alert: AccuracyDrop
expr: accuracy_change_rate{model_name="my_model"} < -0.05
for: 10m
labels:
severity: warning
annotations:
summary: "模型准确率下降超过5%"
当准确率连续3次检测下降超过5%时,触发告警通知到Slack或钉钉。
复现步骤
- 部署Prometheus服务并配置抓取目标
- 在模型推理服务中集成上述监控代码
- 设置Grafana仪表板展示准确率趋势
- 配置告警规则并测试触发条件

讨论