机器学习模型服务质量指标体系
核心监控指标配置
1. 模型性能指标
# 响应时间监控
- metric: model_latency_ms
threshold: 500ms
alert_level: warning
recovery_threshold: 300ms
# 准确率监控
- metric: model_accuracy_rate
threshold: 0.95
alert_level: critical
recovery_threshold: 0.97
# F1分数监控
- metric: model_f1_score
threshold: 0.90
alert_level: warning
recovery_threshold: 0.92
2. 数据质量指标
# 输入数据分布
- metric: input_distribution_drift
threshold: 0.05
alert_level: critical
recovery_threshold: 0.02
# 数据完整性
- metric: data_completeness_rate
threshold: 0.98
alert_level: warning
recovery_threshold: 0.99
告警配置方案
Prometheus告警规则
groups:
- name: model_monitoring
rules:
- alert: HighModelLatency
expr: histogram_quantile(0.95, sum(rate(model_response_time_seconds_bucket[5m])) by (job)) > 0.5
for: 2m
labels:
severity: critical
annotations:
summary: "模型响应时间超过阈值"
日志分析配置
通过ELK Stack监控模型推理日志,设置异常模式检测规则,当出现连续10次请求延迟超过300ms时触发告警。

讨论