图像文本联合训练的数据去重处理流程
在多模态大模型训练中,数据去重是保证模型泛化能力的关键步骤。本文将详细介绍图像-文本对的去重处理流程,包括基于语义相似度和视觉特征的双重去重策略。
1. 数据预处理阶段
首先需要提取图像和文本的特征向量:
import torch
from transformers import CLIPProcessor, CLIPModel
from PIL import Image
# 加载CLIP模型进行特征提取
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
def extract_features(image_path, text):
# 图像特征提取
image = Image.open(image_path)
inputs = processor(images=image, return_tensors="pt")
image_features = model.get_image_features(**inputs)
# 文本特征提取
text_inputs = processor(texts=text, return_tensors="pt")
text_features = model.get_text_features(**text_inputs)
return image_features, text_features
2. 双重去重策略
基于图像视觉特征和文本语义特征分别进行去重:
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
def compute_similarity(features1, features2):
return cosine_similarity(features1, features2)[0][0]
def deduplicate_dataset(image_paths, texts, threshold=0.95):
processed_indices = set()
unique_pairs = []
for i in range(len(image_paths)):
if i in processed_indices:
continue
current_features = extract_features(image_paths[i], texts[i])
# 与后续数据对比
for j in range(i+1, len(image_paths)):
if j in processed_indices:
continue
other_features = extract_features(image_paths[j], texts[j])
# 图像相似度检查
img_sim = compute_similarity(current_features[0], other_features[0])
# 文本相似度检查
text_sim = compute_similarity(current_features[1], other_features[1])
if img_sim > threshold or text_sim > threshold:
processed_indices.add(j)
unique_pairs.append((image_paths[i], texts[i]))
return unique_pairs
3. 实际应用建议
在实际部署中,建议使用哈希索引加速去重过程:
- 先对图像进行特征提取并建立哈希索引
- 再对文本进行语义编码并建立倒排索引
- 双重索引查找减少计算复杂度
此方案可有效避免训练数据中的重复样本,提高模型训练效率。

讨论