大模型推理服务的安全防护技术分析
随着大模型应用的快速发展,推理服务面临的安全威胁日益严峻。本文将从访问控制、输入验证、输出过滤三个维度,对比分析当前主流安全防护技术。
访问控制机制对比
传统API Key方案:
from fastapi import FastAPI, HTTPException
from fastapi.security import HTTPBearer
app = FastAPI()
security = HTTPBearer()
@app.get("/inference")
def secure_inference(auth=Depends(security)):
# 验证token逻辑
if not validate_token(auth.credentials):
raise HTTPException(status_code=401, detail="Invalid token")
return {"result": "inference result"}
JWT Token增强方案:
import jwt
from datetime import datetime, timedelta
def create_access_token(data: dict):
expire = datetime.utcnow() + timedelta(minutes=30)
payload = {"sub": data["user_id"], "exp": expire}
return jwt.encode(payload, SECRET_KEY, algorithm="HS256")
输入验证策略
正则表达式过滤:
import re
def validate_input(user_input: str) -> bool:
# 禁止危险字符
dangerous_patterns = [r"<script.*?>.*?</script>", r"\b(union|select|insert)\b"]
for pattern in dangerous_patterns:
if re.search(pattern, user_input, re.IGNORECASE):
return False
return True
输出过滤机制
内容安全检测:
from transformers import pipeline
classifier = pipeline("text-classification", model="facebook/bart-large-mnli")
def filter_output(response: str) -> str:
# 检测敏感内容
result = classifier(response)
if any(item["label"] == "LABEL_1" for item in result):
return "[FILTERED]"
return response
通过以上技术组合,可以构建多层次防护体系。建议优先部署访问控制,在此基础上加强输入输出验证,确保推理服务安全可靠。

讨论