GPU显存不足时的PyTorch模型优化策略
最近在部署一个ResNet50模型时遇到GPU显存不足的问题,从4GB到8GB再到16GB的显存升级都难以满足需求。以下是我踩坑总结的几种实用方法。
1. 混合精度训练(Mixed Precision)
import torch
from torch.cuda.amp import GradScaler, autocast
scaler = GradScaler()
for epoch in range(epochs):
for batch in dataloader:
optimizer.zero_grad()
with autocast():
outputs = model(batch)
loss = criterion(outputs, targets)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
2. 梯度累积(Gradient Accumulation)
accumulation_steps = 4
for i, batch in enumerate(dataloader):
outputs = model(batch)
loss = criterion(outputs, targets) / accumulation_steps
loss.backward()
if (i + 1) % accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
3. 模型并行(Model Parallelism)
# 将模型分割到不同GPU上
model = torch.nn.DataParallel(model, device_ids=[0, 1])
测试结果:原始模型显存占用8GB,通过混合精度+梯度累积后降至3GB,可正常训练。
建议优先尝试混合精度训练,效果最显著。

讨论