深度学习模型训练速度提升技巧汇总
1. 使用混合精度训练
import torch
import torch.nn as nn
from torch.cuda.amp import GradScaler, autocast
model = YourModel().cuda()
scaler = GradScaler()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(epochs):
for batch in dataloader:
optimizer.zero_grad()
with autocast():
output = model(batch)
loss = criterion(output, target)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
2. 数据加载优化
from torch.utils.data import DataLoader
dataloader = DataLoader(
dataset,
batch_size=64,
num_workers=8,
pin_memory=True,
persistent_workers=True,
prefetch_factor=2
)
3. 模型并行化
# 使用DataParallel
model = nn.DataParallel(model)
# 或使用DistributedDataParallel
from torch.nn.parallel import DistributedDataParallel as DDP
dist.init_process_group(backend='nccl')
model = DDP(model, device_ids=[rank])
性能测试数据:混合精度训练可提升20-40%训练速度,数据加载优化提升30%以上,模型并行化在8卡GPU上可提升50%+。建议按实际硬件配置选择合适策略。

讨论