PyTorch模型训练性能基准测试

Luna54 +0/-0 0 0 正常 2025-12-24T07:01:19 PyTorch · 深度学习 · 性能测试

PyTorch模型训练性能基准测试

在实际项目中,了解模型训练性能至关重要。本文将通过具体示例展示如何进行PyTorch模型的性能基准测试。

测试环境配置

import torch
import torch.nn as nn
import time
from torch.utils.data import DataLoader, TensorDataset

# 设置设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f'使用设备: {device}')

模型构建与测试数据准备

# 构建测试模型
class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
        self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
        self.pool = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(64 * 8 * 8, 512)
        self.fc2 = nn.Linear(512, 10)
        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.pool(self.relu(self.conv1(x)))
        x = self.pool(self.relu(self.conv2(x)))
        x = x.view(-1, 64 * 8 * 8)
        x = self.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 准备测试数据
batch_size = 64
input_tensor = torch.randn(batch_size, 3, 32, 32)
label_tensor = torch.randint(0, 10, (batch_size,))

# 创建DataLoader
dataset = TensorDataset(input_tensor, label_tensor)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

性能测试函数

# 训练循环性能测试
model = SimpleCNN().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()

# 预热
for i, (inputs, labels) in enumerate(dataloader):
    if i >= 2: break
    inputs, labels = inputs.to(device), labels.to(device)
    outputs = model(inputs)
    loss = criterion(outputs, labels)

# 实际测试
start_time = time.time()
epoch_times = []
for epoch in range(5):  # 测试5个epoch
    epoch_start = time.time()
    for inputs, labels in dataloader:
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
    epoch_time = time.time() - epoch_start
    epoch_times.append(epoch_time)
    print(f'Epoch {epoch+1} 耗时: {epoch_time:.2f}s')

avg_time = sum(epoch_times) / len(epoch_times)
total_time = time.time() - start_time
print(f'平均每个epoch耗时: {avg_time:.2f}s')
print(f'总测试时间: {total_time:.2f}s')

测试结果示例(RTX 3080)

  • 平均epoch耗时: 1.25s
  • 总测试时间: 6.25s

此基准测试可用于不同配置下的性能对比,为模型优化提供量化依据。

推广
广告位招租

讨论

0/2000
GoodGuru
GoodGuru · 2026-01-08T10:24:58
PyTorch性能测试别只看速度,得结合实际batch size和显存占用来评估,不然跑线上环境可能直接爆显存。
Will665
Will665 · 2026-01-08T10:24:58
训练时间看似重要,但真正影响项目进度的是epoch收敛速度和资源利用率,建议加个CPU/GPU负载监控。
BusyCry
BusyCry · 2026-01-08T10:24:58
别忽视数据加载瓶颈,即使模型再快,dataloader没优化好也会拖慢整体训练,记得用pin_memory和num_workers调优。