在TensorFlow Serving微服务架构中,Kubernetes HPA与TensorFlow服务的集成是实现弹性伸缩的关键方案。本文将通过实际配置展示如何基于CPU使用率自动调节TensorFlow服务Pod数量。
首先,部署TensorFlow Serving服务并创建HPA配置文件:
apiVersion: apps/v1
kind: Deployment
metadata:
name: tensorflow-serving
spec:
replicas: 2
selector:
matchLabels:
app: tensorflow-serving
template:
metadata:
labels:
app: tensorflow-serving
spec:
containers:
- name: tensorflow-serving
image: tensorflow/serving:latest
ports:
- containerPort: 8501
resources:
requests:
memory: "256Mi"
cpu: "250m"
limits:
memory: "512Mi"
cpu: "500m"
---
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: tensorflow-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: tensorflow-serving
minReplicas: 2
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
执行部署命令:
kubectl apply -f tensorflow-deployment.yaml
kubectl apply -f hpa-config.yaml
通过压力测试验证HPA效果,当CPU使用率超过70%时,HPA会自动增加Pod数量。建议配合Ingress Controller实现负载均衡,并配置适当的资源限制避免资源争抢。
在生产环境中,还需要监控HPA的调节频率和Pod的健康状态,确保服务稳定性。

讨论