在Kubernetes集群中优化TensorFlow Serving微服务的资源分配策略,需要从容器化部署和负载均衡配置两方面入手。
首先,在Dockerfile构建阶段,建议使用多阶段构建来减小镜像体积。以下是关键配置示例:
FROM tensorflow/tensorflow:2.13.0-gpu-py3-jupyter AS builder
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
FROM tensorflow/serving:2.13.0-gpu as runtime
COPY --from=builder /app /app
EXPOSE 8501
其次,通过Kubernetes资源限制配置实现精准分配。创建资源配置文件:
apiVersion: v1
kind: ResourceQuota
metadata:
name: tf-serving-quota
spec:
hard:
requests.cpu: "2"
requests.memory: 4Gi
limits.cpu: "4"
limits.memory: 8Gi
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: tensorflow-serving
spec:
replicas: 3
selector:
matchLabels:
app: tf-serving
template:
metadata:
labels:
app: tf-serving
spec:
containers:
- name: tensorflow-serving
image: tensorflow/serving:2.13.0-gpu
ports:
- containerPort: 8501
resources:
requests:
memory: "2Gi"
cpu: "1"
limits:
memory: "4Gi"
cpu: "2"
最后,配置Ingress负载均衡:
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: tf-serving-ingress
annotations:
nginx.ingress.kubernetes.io/rewrite-target: /
spec:
rules:
- host: tf-serving.example.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: tf-serving-service
port:
number: 8501
通过以上配置,可实现TensorFlow Serving服务的资源高效利用和负载均衡。

讨论