在TensorFlow Serving微服务架构中,负载均衡配置是确保模型服务高可用性和性能的关键环节。本文将基于Docker容器化环境,提供可复现的负载均衡策略配置方案。
环境准备
首先,使用Docker Compose创建TensorFlow Serving服务集群:
version: '3.8'
services:
tensorflow-serving-1:
image: tensorflow/serving:latest
ports:
- "8501:8501"
- "8500:8500"
volumes:
- ./models:/models
environment:
- MODEL_NAME=model_name
command: tensorflow_model_server --model_base_path=/models/model_name --rest_api_port=8501 --grpc_port=8500
tensorflow-serving-2:
image: tensorflow/serving:latest
ports:
- "8502:8501"
- "8503:8500"
volumes:
- ./models:/models
environment:
- MODEL_NAME=model_name
command: tensorflow_model_server --model_base_path=/models/model_name --rest_api_port=8501 --grpc_port=8500
负载均衡配置
采用Nginx进行负载均衡,配置文件如下:
upstream tensorflow_servers {
server tensorflow-serving-1:8501;
server tensorflow-serving-2:8501;
keepalive 32;
}
server {
listen 80;
location / {
proxy_pass http://tensorflow_servers;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
}
}
高级策略
为实现更智能的负载均衡,可结合Prometheus监控指标:
# Prometheus配置
scrape_configs:
- job_name: 'tensorflow-serving'
static_configs:
- targets: ['tensorflow-serving-1:8500', 'tensorflow-serving-2:8500']
通过Grafana仪表板可实时监控服务状态,实现动态负载分配。

讨论