在TensorFlow Serving微服务架构中,容器化部署的资源监控与告警配置是保障服务稳定性的关键环节。本文将通过Docker容器化方案,介绍如何实现TensorFlow模型服务的资源监控与告警。
Docker容器化部署
首先,创建Dockerfile进行容器化:
FROM tensorflow/serving:latest
# 暴露端口
EXPOSE 8500 8501
# 启动命令
ENTRYPOINT ["tensorflow_model_server"]
CMD ["--model_base_path=/models/model_name", "--rest_api_port=8501", "--grpc_port=8500"]
资源监控配置
使用Prometheus采集容器指标,配置prometheus.yml:
scrape_configs:
- job_name: 'tensorflow-serving'
static_configs:
- targets: ['localhost:8501']
metrics_path: /monitoring/prometheus
告警规则配置
创建alert.rules.yml:
groups:
- name: tensorflow-alerts
rules:
- alert: HighCPUUsage
expr: rate(container_cpu_usage_seconds_total[5m]) > 0.8
for: 2m
labels:
severity: critical
annotations:
summary: "High CPU usage detected"
负载均衡配置
使用Nginx实现负载均衡:
upstream tensorflow_servers {
server 172.17.0.2:8500;
server 172.17.0.3:8500;
}
server {
listen 80;
location / {
proxy_pass http://tensorflow_servers;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
}
}
通过以上配置,可实现容器化TensorFlow服务的完整监控告警体系。

讨论