深度学习模型部署测试方案
在大模型推理加速实践中,部署测试是确保性能优化效果的关键环节。以下是一个可复现的测试方案。
测试环境准备
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
pip install onnxruntime-gpu
pip install transformers
模型量化测试示例
import torch
import torch.nn as nn
from torch.quantization import quantize_dynamic
class SimpleModel(nn.Module):
def __init__(self):
super().__init__()
self.layer1 = nn.Linear(768, 512)
self.layer2 = nn.Linear(512, 256)
self.layer3 = nn.Linear(256, 10)
def forward(self, x):
x = torch.relu(self.layer1(x))
x = torch.relu(self.layer2(x))
return self.layer3(x)
# 量化模型
model = SimpleModel()
quantized_model = quantize_dynamic(
model,
{nn.Linear},
dtype=torch.qint8
)
性能测试代码
import time
import torch
def benchmark_model(model, input_tensor, iterations=100):
model.eval()
with torch.no_grad():
# 预热
for _ in range(10):
_ = model(input_tensor)
# 测试
start_time = time.time()
for _ in range(iterations):
_ = model(input_tensor)
end_time = time.time()
avg_time = (end_time - start_time) / iterations
return avg_time
# 测试原始模型与量化模型
input_tensor = torch.randn(1, 768)
original_time = benchmark_model(model, input_tensor)
quantized_time = benchmark_model(quantized_model, input_tensor)
print(f"原始模型平均耗时: {original_time:.6f}s")
print(f"量化模型平均耗时: {quantized_time:.6f}s")
剪枝测试方案
from torch.nn.utils import prune
# 对线性层进行结构化剪枝
prune.l1_unstructured(model.layer1, name='weight', amount=0.3)
prune.ln_structured(model.layer2, name='weight', amount=0.4, n=2, p=1)
结果分析
通过上述测试可量化模型在不同优化策略下的性能提升,为实际部署决策提供数据支撑。

讨论