模型部署测试流程规范
1. 测试环境准备
# 安装必要的依赖包
pip install torch torchvision transformers accelerate
pip install onnxruntime onnx
pip install torch-tensorrt # NVIDIA GPU使用
2. 模型量化测试流程
2.1 动态量化测试
import torch
from torch.quantization import quantize_dynamic
def test_dynamic_quantization(model, test_data):
# 动态量化
quantized_model = quantize_dynamic(
model,
{torch.nn.Linear},
dtype=torch.qint8
)
# 性能测试
import time
start = time.time()
for data in test_data:
_ = quantized_model(data)
end = time.time()
print(f'动态量化推理时间: {end-start:.4f}s')
return quantized_model
2.2 静态量化测试
import torch.quantization as quantization
def test_static_quantization(model, calib_data):
# 设置量化配置
model.eval()
quantization.prepare(model, inplace=True)
# 校准数据推理
with torch.no_grad():
for data in calib_data:
model(data)
# 转换为量化模型
quantization.convert(model, inplace=True)
return model
3. 模型剪枝测试
from torch.nn.utils import prune
def test_pruning(model, pruning_ratio=0.3):
# 全局剪枝
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear):
prune.l1_unstructured(module, name='weight', amount=pruning_ratio)
# 评估剪枝后性能
model.eval()
with torch.no_grad():
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f'剪枝后参数量: {total_params}')
return model
4. 部署测试验证
4.1 性能指标记录
- 推理时间(ms)
- 内存占用(MB)
- 准确率保持率
4.2 复现步骤
- 原始模型推理
- 量化/剪枝处理
- 部署测试环境搭建
- 性能对比验证
- 结果记录与分析

讨论