推理性能调优:从系统到算法优化
在大模型推理场景下,性能优化是提升用户体验和降低计算成本的关键。本文将从系统层面和算法层面提供可复现的优化方案。
1. 硬件层面优化
使用TensorRT进行模型转换,可以显著提升推理速度。以下为具体代码示例:
import tensorrt as trt
import torch
def build_engine(onnx_model_path, engine_path):
builder = trt.Builder(trt.Logger(trt.INFO))
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
parser = trt.OnnxParser(network, trt.Logger(trt.INFO))
with open(onnx_model_path, 'rb') as model:
parser.parse(model.read())
config = builder.create_builder_config()
config.max_workspace_size = 1 << 30 # 1GB
engine = builder.build_engine(network, config)
with open(engine_path, 'wb') as f:
f.write(engine.serialize())
2. 模型剪枝优化
通过PyTorch的剪枝模块,我们可以移除冗余权重。示例代码:
import torch.nn.utils.prune as prune
def prune_model(model, pruning_rate=0.3):
for name, module in model.named_modules():
if isinstance(module, torch.nn.Conv2d) or isinstance(module, torch.nn.Linear):
prune.l1_unstructured(module, name='weight', amount=pruning_rate)
3. 动态批处理
根据输入数据特征动态调整批处理大小,提升资源利用率。示例:
from torch.utils.data import DataLoader
def adaptive_batch_size(data_loader, max_batch_size=64):
batch_sizes = []
for batch in data_loader:
if len(batch) <= max_batch_size:
batch_sizes.append(len(batch))
return max(set(batch_sizes), key=batch_sizes.count)
以上方法可实现20%-50%的推理性能提升,建议根据具体场景选择合适优化策略。

讨论