性能评估实践:微调后模型上线前的性能基准测试
在LLM微调工程化流程中,性能评估是确保模型质量的关键环节。本文将分享一套可复现的基准测试方案。
测试环境准备
# 安装必要的依赖包
pip install torch transformers datasets accelerate
核心测试流程
- 数据集构建:使用标准测试集如GLUE、SuperGLUE等
- 基准测试脚本:
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
def benchmark_model(model_path, test_data):
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
# 评估指标计算
model.eval()
total_time = 0
correct = 0
total = 0
with torch.no_grad():
for batch in test_data:
inputs = tokenizer(batch['text'], return_tensors='pt', padding=True, truncation=True)
labels = batch['label']
start_time = time.time()
outputs = model(**inputs)
end_time = time.time()
total_time += (end_time - start_time)
preds = torch.argmax(outputs.logits, dim=-1)
correct += (preds == labels).sum().item()
total += len(labels)
accuracy = correct / total
avg_inference_time = total_time / len(test_data)
return accuracy, avg_inference_time
LoRA Adapter微调后的测试
对于LoRA微调模型,需要特别注意adapter权重的加载和合并:
# 加载LoRA权重
model.load_adapter('path/to/lora_weights')
# 合并权重
model.merge_and_unload()
关键指标监控
- 准确率:模型在验证集上的预测精度
- 推理时间:单次推理耗时
- 内存占用:GPU/CPU资源使用情况
建议将测试结果记录到模型版本管理系统中,形成可追溯的性能基线。

讨论