PyTorch DDP分布式训练部署实践
在现代机器学习项目中,PyTorch Distributed Data Parallel (DDP)已成为多机多卡训练的标准方案。本文将分享一个完整的部署实践案例。
环境准备
首先确保环境包含:
pip install torch torchvision torchaudio
核心配置代码
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
def setup(rank, world_size):
# 初始化分布式环境
dist.init_process_group("nccl", rank=rank, world_size=world_size)
torch.cuda.set_device(rank)
def cleanup():
dist.destroy_process_group()
# 训练函数
def train(rank, world_size):
setup(rank, world_size)
# 创建模型并移动到GPU
model = MyModel().to(rank)
# 包装模型
ddp_model = DDP(model, device_ids=[rank])
# 数据加载器配置
train_loader = torch.utils.data.DataLoader(
dataset,
batch_size=32,
shuffle=True,
num_workers=4,
pin_memory=True
)
# 优化器配置
optimizer = torch.optim.Adam(ddp_model.parameters(), lr=0.001)
# 训练循环
for epoch in range(10):
for batch in train_loader:
optimizer.zero_grad()
output = ddp_model(batch)
loss = criterion(output, target)
loss.backward()
optimizer.step()
cleanup()
启动命令
python -m torch.multiprocessing --nproc_per_node=4 train.py
通过合理配置DDP参数,可显著提升训练效率,建议根据硬件配置调整batch size和学习率。

讨论