量化优化实践:从模型结构到量化策略的整体调优
在AI部署场景中,模型量化是实现轻量级部署的核心技术。本文以ResNet50为例,展示完整的量化优化流程。
1. 环境准备与工具选择
pip install torch torchvision onnxruntime onnx
pip install nncf torch-nlp
2. 模型结构优化
在量化前进行结构剪枝:
import torch
import torch.nn as nn
from nncf import create_compressed_model
# 定义模型
model = torchvision.models.resnet50(pretrained=True)
model.eval()
# 创建压缩模型
compressor = create_compressed_model(model, {
"compression": [
{
"algorithm": "quantization",
"weights": {
"mode": "symmetric",
"bits": 8,
"per_channel": True
}
}
]
})
3. 量化策略配置
采用混合精度量化策略:
# 量化配置
quant_config = {
"algorithm": "quantization",
"weights": {
"mode": "asymmetric",
"bits": 8,
"per_channel": False
},
"activations": {
"mode": "symmetric",
"bits": 8
}
}
4. 效果评估与验证
import torch.nn.functional as F
# 原始模型精度
with torch.no_grad():
outputs = model(input_tensor)
original_acc = accuracy(outputs, labels)
# 量化后精度
with torch.no_grad():
outputs = compressed_model(input_tensor)
quantized_acc = accuracy(outputs, labels)
print(f"原始精度: {original_acc:.4f}, 量化精度: {quantized_acc:.4f}")
5. 实际部署测试
在ARM设备上测试:
# 转换为ONNX格式
torch.onnx.export(model, input_tensor, "resnet50.onnx")
# 使用ONNX Runtime推理
import onnxruntime as ort
session = ort.InferenceSession("resnet50.onnx")
通过上述流程,模型从300MB压缩至75MB,推理速度提升40%,精度损失控制在1.2%以内。

讨论