量化部署测试用例设计:从单元测试到集成测试完整方案
测试框架搭建
使用PyTorch Quantization API进行量化测试,以ResNet50模型为例。
import torch
import torch.quantization as quantization
import torch.nn.functional as F
def setup_quantization_model(model):
# 设置量化配置
model.qconfig = quantization.get_default_qat_qconfig('fbgemm')
quantization.prepare_qat(model, inplace=True)
return model
# 加载模型并设置量化
model = torch.load('resnet50.pth')
quantized_model = setup_quantization_model(model)
单元测试用例
针对量化权重进行精度验证:
# 量化权重分布测试
def test_weight_distribution():
# 量化后权重范围测试
for name, module in quantized_model.named_modules():
if hasattr(module, 'weight') and module.weight is not None:
weight = module.weight
print(f'{name}: min={weight.min()}, max={weight.max()}')
assert weight.max() <= 127 and weight.min() >= -128
集成测试方案
使用MNIST数据集进行端到端验证:
# 模型推理性能测试
import time
def benchmark_inference(model, input_tensor):
model.eval()
start_time = time.time()
with torch.no_grad():
output = model(input_tensor)
end_time = time.time()
return end_time - start_time
# 原始模型 vs 量化模型性能对比
input_tensor = torch.randn(1, 3, 224, 224)
original_time = benchmark_inference(model, input_tensor)
quantized_time = benchmark_inference(quantized_model, input_tensor)
print(f'原始模型耗时: {original_time:.4f}s')
print(f'量化模型耗时: {quantized_time:.4f}s')
效果评估标准
- 精度损失控制在1%以内
- 推理速度提升20%以上
- 内存占用减少50%
通过以上测试用例,可完整验证量化部署的可靠性与性能表现。

讨论