联合训练系统中模型训练过程监控记录
在多模态大模型联合训练中,建立完善的训练过程监控机制至关重要。以下是一个可复现的监控记录方案:
数据预处理阶段监控
# 数据加载与预处理
import torch
from torch.utils.data import DataLoader
class MultimodalDataset(Dataset):
def __init__(self, data_path):
self.data = load_json(data_path)
# 记录数据分布
self.text_length_stats = []
self.image_size_stats = []
def __getitem__(self, idx):
item = self.data[idx]
# 文本长度监控
text_len = len(item['text'].split())
self.text_length_stats.append(text_len)
# 图像尺寸监控
img = load_image(item['image_path'])
self.image_size_stats.append(img.size)
return {
'image': preprocess_image(img),
'text': preprocess_text(item['text']),
'metadata': {'text_len': text_len, 'img_size': img.size}
}
训练过程监控
# 训练循环中的监控记录
import logging
from datetime import datetime
class TrainingMonitor:
def __init__(self):
self.loss_history = []
self.accuracy_history = []
self.batch_time = []
def log_batch(self, batch_idx, loss, accuracy, batch_time):
timestamp = datetime.now()
record = {
'timestamp': timestamp,
'batch': batch_idx,
'loss': float(loss),
'accuracy': float(accuracy),
'time': float(batch_time)
}
self.loss_history.append(record)
def save_checkpoint(self, model_state_dict, optimizer_state_dict):
checkpoint = {
'model_state': model_state_dict,
'optimizer_state': optimizer_state_dict,
'monitor_data': self.__dict__
}
torch.save(checkpoint, f'checkpoint_{datetime.now().strftime("%Y%m%d_%H%M%S")}.pt')
模型融合监控
# 多模态融合层监控
class FusionMonitor:
def __init__(self):
self.fusion_weights = []
self.attention_maps = []
def monitor_fusion(self, image_features, text_features, fusion_weights):
# 记录融合权重分布
weight_stats = {
'mean': torch.mean(fusion_weights).item(),
'std': torch.std(fusion_weights).item(),
'max': torch.max(fusion_weights).item()
}
self.fusion_weights.append(weight_stats)
监控数据可视化
# 使用matplotlib可视化监控数据
import matplotlib.pyplot as plt
def plot_training_monitor(monitor):
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8))
# 损失曲线
losses = [r['loss'] for r in monitor.loss_history]
ax1.plot(losses)
ax1.set_title('Training Loss')
# 准确率曲线
accuracies = [r['accuracy'] for r in monitor.accuracy_history]
ax2.plot(accuracies)
ax2.set_title('Training Accuracy')
plt.tight_layout()
plt.savefig('training_monitor.png')
通过上述方案,可以实现完整的联合训练过程监控,确保模型训练的稳定性和可复现性。

讨论