基于孪生网络的图像文本匹配实现
数据预处理流程
首先对图像数据进行标准化处理:
import torch
from torchvision import transforms
class ImagePreprocessor:
def __init__(self):
self.transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def preprocess(self, image):
return self.transform(image)
文本数据使用BERT tokenizer进行编码:
from transformers import BertTokenizer
class TextPreprocessor:
def __init__(self):
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
def preprocess(self, text):
return self.tokenizer(text, padding=True, truncation=True, max_length=128)
孪生网络架构设计
import torch.nn as nn
import torch.nn.functional as F
class SiameseNetwork(nn.Module):
def __init__(self, embedding_dim=768):
super().__init__()
# 图像分支
self.image_branch = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(),
nn.AdaptiveAvgPool2d((7, 7))
)
# 文本分支
self.text_branch = nn.LSTM(embedding_dim, 512, batch_first=True)
# 联合特征提取
self.fusion_layer = nn.Sequential(
nn.Linear(128 * 7 * 7 + 512, 512),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, 256)
)
def forward(self, image, text):
# 图像特征提取
img_features = self.image_branch(image).view(image.size(0), -1)
# 文本特征提取
text_output, _ = self.text_branch(text)
text_features = text_output[:, -1, :] # 取最后一个时间步
# 特征拼接
combined_features = torch.cat([img_features, text_features], dim=1)
output = self.fusion_layer(combined_features)
return F.normalize(output, p=2, dim=1)
训练策略
使用对比损失函数进行联合训练:
import torch.optim as optim
from torch.nn import CosineEmbeddingLoss
# 损失函数
loss_fn = CosineEmbeddingLoss(margin=0.3)
optimizer = optim.Adam(model.parameters(), lr=1e-4)
# 训练循环
for epoch in range(10):
for batch in dataloader:
image, text, labels = batch['image'], batch['text'], batch['label']
features = model(image, text)
loss = loss_fn(features[0], features[1], labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()```
该架构通过孪生网络结构,实现了图像与文本的联合特征提取,为多模态匹配任务提供了可复现的解决方案。
讨论