深度学习推理加速实践:从模型压缩到硬件适配
在大模型时代,推理效率成为部署关键。本文将分享从模型压缩到硬件适配的完整优化路径,助力提升模型推理性能。
1. 模型剪枝与量化
以ResNet50为例,使用TensorFlow Model Optimization Toolkit进行量化感知训练(QAT):
import tensorflow as tf
import tensorflow_model_optimization as tfmot
# 构建模型
model = tf.keras.applications.ResNet50(weights='imagenet', include_top=True)
class QuantizeCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
if epoch == 10: # 模型训练到第10个epoch后开始量化
self.quantize_model()
# 应用量化
quantize_model = tfmot.quantization.keras.quantize_model
q_aware_model = quantize_model(model)
2. 硬件适配优化
针对NVIDIA GPU,使用TensorRT进行推理加速:
import tensorrt as trt
import torch
def build_engine(onnx_model_path, engine_path):
builder = trt.Builder(trt.Logger(trt.Logger.WARNING))
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
parser = trt.OnnxParser(network, builder.logger)
with open(onnx_model_path, 'rb') as f:
parser.parse(f.read())
config = builder.create_builder_config()
config.max_workspace_size = 1 << 30
config.set_flag(trt.BuilderFlag.FP16)
engine = builder.build_engine(network, config)
with open(engine_path, 'wb') as f:
f.write(engine.serialize())
3. 性能测试
使用torch.profiler进行性能分析:
with torch.profiler.profile(
activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA],
record_shapes=True
) as prof:
model(input)
print(prof.key_averages().table(sort_by="self_cuda_time_total", row_limit=10))
通过以上步骤,可将推理速度提升30%-50%,同时保持模型精度。建议结合具体硬件平台选择合适的优化策略。

讨论