大模型特征工程框架设计
在大模型训练过程中,特征工程是决定模型性能的关键环节。本文将介绍一个可复用的特征工程框架设计,帮助数据科学家高效处理大模型训练数据。
框架架构
FeatureEngineeringPipeline(
data_loader,
preprocessing_steps,
feature_extraction,
feature_selection,
validation
)
核心组件实现
1. 数据预处理模块
import pandas as pd
from sklearn.preprocessing import StandardScaler, LabelEncoder
class DataPreprocessor:
def __init__(self):
self.scaler = StandardScaler()
self.label_encoders = {}
def preprocess(self, df):
# 数值特征标准化
numeric_cols = df.select_dtypes(include=['number']).columns
df[numeric_cols] = self.scaler.fit_transform(df[numeric_cols])
# 分类特征编码
categorical_cols = df.select_dtypes(include=['object']).columns
for col in categorical_cols:
if col not in self.label_encoders:
self.label_encoders[col] = LabelEncoder()
df[col] = self.label_encoders[col].fit_transform(df[col])
return df
2. 特征提取模块
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np
class FeatureExtractor:
def __init__(self, max_features=10000):
self.vectorizer = TfidfVectorizer(max_features=max_features)
def extract_text_features(self, text_data):
return self.vectorizer.fit_transform(text_data)
def extract_numerical_features(self, df):
# 自定义数值特征工程
features = []
for col in df.columns:
if df[col].dtype in ['int64', 'float64']:
features.append(df[col])
return np.column_stack(features)
使用示例
# 构建完整流程
pipeline = FeatureEngineeringPipeline()
processed_data = pipeline.preprocess(raw_data)
features = pipeline.extract_features(processed_data)
final_features = pipeline.select_features(features)
该框架支持模块化扩展,可根据具体任务调整预处理和特征提取策略。

讨论