数据清洗工具的持续集成部署
在大模型训练过程中,数据质量直接影响模型性能。本文将分享如何构建一个自动化数据清洗工具的CI/CD流水线。
环境准备
首先创建基础环境:
# 创建虚拟环境
python -m venv data-cleaning-env
source data-cleaning-env/bin/activate # Linux/Mac
# 或 data-cleaning-env\Scripts\activate # Windows
# 安装依赖
pip install pandas numpy scikit-learn pytest pytest-cov
构建清洗流水线
创建 clean_pipeline.py:
import pandas as pd
import numpy as np
def clean_data(df):
# 删除重复行
df = df.drop_duplicates()
# 处理缺失值
df = df.fillna(method='ffill') # 前向填充
# 异常值检测(基于IQR方法)
numeric_cols = df.select_dtypes(include=[np.number]).columns
for col in numeric_cols:
Q1 = df[col].quantile(0.25)
Q3 = df[col].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
df[col] = df[col].clip(lower=lower_bound, upper=upper_bound)
return df
CI/CD配置
创建 .github/workflows/ci.yml:
name: Data Cleaning Pipeline
on: [push, pull_request]
jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.9'
- name: Install dependencies
run: |
pip install -r requirements.txt
- name: Run tests
run: |
pytest tests/
自动化测试
编写测试用例 tests/test_clean.py:
import pandas as pd
import numpy as np
from clean_pipeline import clean_data
def test_clean_data():
# 创建测试数据
data = {
'A': [1, 2, np.nan, 4],
'B': [10, 20, 30, 40]
}
df = pd.DataFrame(data)
# 执行清洗
cleaned_df = clean_data(df)
# 验证结果
assert not cleaned_df.isnull().any().any()
通过以上配置,可以实现数据清洗工具的自动化测试和持续集成。建议将此流程集成到你的数据工程管道中。

讨论