基于Kubernetes的大模型训练作业自动扩缩容实践
在大模型训练场景中,资源利用率和成本控制是核心挑战。本文分享一个基于Kubernetes的自动扩缩容解决方案,通过HPA(Horizontal Pod Autoscaler)结合自定义指标实现智能资源调度。\n
核心思路
首先需要监控训练作业的关键指标:GPU利用率、内存占用率、训练进度等。我们采用Prometheus采集这些指标,并通过Kubernetes Metrics Server暴露给HPA组件。
实施步骤
- 创建自定义指标适配器
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: model-training-monitor
spec:
selector:
matchLabels:
app: model-training
endpoints:
- port: metrics
interval: 30s
- 配置HPA策略
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: model-training-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: model-training-deployment
minReplicas: 2
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
- 训练作业配置
apiVersion: apps/v1
kind: Deployment
metadata:
name: model-training-deployment
spec:
replicas: 2
selector:
matchLabels:
app: model-training
template:
spec:
containers:
- name: trainer
image: model-trainer:v1.0
resources:
requests:
memory: "4Gi"
cpu: "2"
nvidia.com/gpu: 1
limits:
memory: "8Gi"
cpu: "4"
nvidia.com/gpu: 1
通过上述配置,当训练作业负载增加时,Kubernetes会自动扩展Pod数量;当负载下降时则自动缩容,有效平衡了计算资源利用率和训练成本。此方案已在多个大模型训练项目中验证可用性。
注意:实际部署时需根据具体模型训练特点调整指标阈值,避免频繁扩缩容影响训练稳定性。

讨论