容器环境下的大模型服务性能调优
随着大模型服务的广泛应用,容器化部署已成为主流趋势。本文将分享在Kubernetes环境下对大模型服务进行性能调优的实战经验。
环境准备
apiVersion: v1
kind: Pod
metadata:
name: model-pod
spec:
containers:
- name: model-container
image: my-model:latest
resources:
requests:
memory: "2Gi"
cpu: "1000m"
limits:
memory: "4Gi"
cpu: "2000m"
关键调优步骤
-
资源限制设置:根据模型推理需求合理分配CPU和内存,避免资源争抢。
-
启动探针优化:
livenessProbe:
httpGet:
path: /health
port: 8080
initialDelaySeconds: 30
periodSeconds: 10
- 水平扩展配置:
autoscaling/v2beta2 HorizontalPodAutoscaler
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: model-deployment
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
通过以上配置,可有效提升大模型服务在容器环境下的稳定性和响应性能。

讨论