LLM微服务部署的自动化测试实践
在LLM(大语言模型)微服务化改造过程中,自动化测试是保障服务质量的关键环节。本文将分享基于DevOps实践的LLM微服务自动化测试策略。
测试架构设计
我们采用"测试即代码"的理念,构建了包含单元测试、集成测试和端到端测试的完整测试体系:
# test_pipeline.yaml
stages:
- name: unit_test
steps:
- run: python -m pytest tests/unit/
- coverage: report
- name: integration_test
steps:
- run: docker-compose up -d
- run: python -m pytest tests/integration/
- run: docker-compose down
- name: e2e_test
steps:
- run: kubectl apply -f manifests/
- run: python -m pytest tests/e2e/
- run: kubectl delete -f manifests/
微服务监控集成
在测试过程中,通过Prometheus和Grafana实时监控服务指标:
# test_monitor.py
import requests
import time
from prometheus_client import start_http_server
class LLMServiceMonitor:
def __init__(self, service_url):
self.service_url = service_url
def test_performance(self):
start_time = time.time()
response = requests.get(f"{self.service_url}/generate")
end_time = time.time()
# 记录响应时间
latency = end_time - start_time
print(f"Response time: {latency}s")
return latency < 2.0 # 要求响应时间小于2秒
CI/CD集成实践
通过Jenkins实现测试自动触发,确保每次代码变更都能及时验证:
pipeline {
agent any
stages {
stage('Build') {
steps {
sh 'docker build -t llm-service .'
}
}
stage('Test') {
steps {
sh 'docker run llm-service python -m pytest tests/'
}
}
}
}
这种自动化测试实践有效提升了LLM微服务部署的稳定性和可靠性。

讨论