基于Prometheus的LLM服务监控告警
随着大模型服务的微服务化改造,监控告警体系成为保障服务稳定运行的关键。本文将介绍如何基于Prometheus构建LLM服务的监控告警系统。
监控指标收集
首先需要在LLM服务中集成Prometheus客户端库,以收集关键指标:
from prometheus_client import start_http_server, Counter, Histogram
# 定义计数器和直方图
request_count = Counter('llm_requests_total', 'Total requests', ['method', 'endpoint'])
request_duration = Histogram('llm_request_duration_seconds', 'Request duration')
@app.route('/predict')
def predict():
with request_duration.time():
# 业务逻辑
request_count.labels(method='POST', endpoint='/predict').inc()
return response
Prometheus配置
在prometheus.yml中添加目标:
scrape_configs:
- job_name: 'llm-service'
static_configs:
- targets: ['localhost:8000']
告警规则配置
创建告警规则文件alerting_rules.yml:
groups:
- name: llm-alerts
rules:
- alert: HighLatency
expr: histogram_quantile(0.95, sum(rate(llm_request_duration_seconds_bucket[5m])) by (le)) > 10
for: 2m
labels:
severity: page
annotations:
summary: "LLM服务延迟过高"
通过以上配置,当95%请求延迟超过10秒时,将触发告警通知。

讨论