基于Docker的大模型服务部署最佳实践
在大模型微服务化改造过程中,容器化部署已成为主流实践。本文将分享基于Docker的高效部署方案。
部署架构
+----------------+ +----------------+ +----------------+
| Nginx | --> | Model Service | --> | Redis |
| Load Balancer | | API Server | | Cache Layer |
+----------------+ +----------------+ +----------------+
Dockerfile构建
FROM nvidia/cuda:11.8.0-cudnn8-runtime-ubuntu20.04
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY model/ ./model/
COPY app.py ./
EXPOSE 8000
CMD ["python", "app.py"]
部署脚本
#!/bin/bash
# docker-compose.yml
version: '3.8'
services:
model-service:
build: .
ports:
- "8000:8000"
environment:
- MODEL_PATH=/app/model
- LOG_LEVEL=INFO
volumes:
- ./logs:/app/logs
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: all
capabilities: [gpu]
监控配置
建议集成Prometheus + Grafana监控体系,重点关注GPU利用率、内存使用率等关键指标。
部署验证:
docker-compose up -d
# 查看日志
sudo docker logs -f model-service
# 验证服务
curl http://localhost:8000/health

讨论