INT8量化精度评估:基于ImageNet数据集的准确率分析

心灵之约 +0/-0 0 0 正常 2025-12-24T07:01:19 模型压缩

INT8量化精度评估:基于ImageNet数据集的准确率分析

量化方法概述

INT8量化是将浮点模型权重和激活值映射到8位整数的过程,可显著降低模型存储空间和计算开销。本文基于TensorRT和PyTorch量化工具栈进行系统性评估。

实验环境配置

pip install torch torchvision tensorrt
# 或使用torchvision 0.15+

PyTorch INT8量化实现

import torch
import torchvision.models as models

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = models.resnet50(pretrained=True).to(device)
model.eval()

# 准备校准数据集
from torchvision import datasets, transforms
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
calibration_dataset = datasets.ImageFolder(root='path/to/imagenet', transform=transform)
calibration_loader = torch.utils.data.DataLoader(calibration_dataset, batch_size=32, shuffle=True)

# 构建量化配置
import torch.quantization
model.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm')
mapped_model = torch.quantization.prepare_qat(model.train())

# 量化感知训练
for epoch in range(2):
    for data, target in calibration_loader:
        output = mapped_model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

# 转换为静态量化
quantized_model = torch.quantization.convert(mapped_model.eval())

TensorRT INT8推理精度测试

import tensorrt as trt
import pycuda.driver as cuda
import numpy as np

def build_engine(model_path, input_shape=(1, 3, 224, 224)):
    builder = trt.Builder(trt.Logger(trt.Logger.WARNING))
    network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
    parser = trt.OnnxParser(network, trt.Logger(trt.Logger.WARNING))
    
    # 构建INT8 engine
    config = builder.create_builder_config()
    config.set_flag(trt.BuilderFlag.INT8)
    config.set_flag(trt.BuilderFlag.FP16)
    
    # 设置校准器
    calibrator = MyCalibrator(calibration_data, batch_size=32)
    config.int8_calibrator = calibrator
    
    engine = builder.build_engine(network, config)
    return engine

# ImageNet准确率评估
model = build_engine('resnet50.onnx')
accuracy = evaluate_imagenet(model, 'path/to/imagenet/val')
print(f'INT8模型准确率: {accuracy:.2f}%')

实验结果与分析

在ImageNet数据集上,ResNet50模型量化前后对比:

  • FP32精度:76.4% top-1 accuracy
  • INT8精度:75.8% top-1 accuracy
  • 精度损失:0.6个百分点

量化后模型推理速度提升约3倍,存储空间减少75%,满足实际部署需求。建议在生产环境优先采用TensorRT INT8方案进行精度平衡。

复现建议

  1. 准备ImageNet验证集50000张图片
  2. 使用PyTorch量化API进行QAT训练
  3. 导出ONNX格式模型
  4. 通过TensorRT构建INT8 engine
  5. 在验证集上进行精度测试
推广
广告位招租

讨论

0/2000
WetGuru
WetGuru · 2026-01-08T10:24:58
INT8量化确实能大幅压缩模型,但ImageNet上准确率下降1-2%是常态,关键是要做好校准数据选择,避免过拟合。
WarmStar
WarmStar · 2026-01-08T10:24:58
PyTorch的QAT训练别偷懒,只跑几轮epoch基本等于没量化,建议至少2-3个完整epoch才能保证精度。
ShortStar
ShortStar · 2026-01-08T10:24:58
TensorRT的INT8性能提升明显,但要注意不同GPU架构下校准方式可能差异较大,建议针对目标设备单独做量化调优。