量化测试自动化:基于CI/CD流程的模型验证
在AI模型部署过程中,量化测试往往成为最容易被忽视但最关键的环节。本文将分享一套可复现的CI/CD流程,实现模型量化的自动化验证。
环境准备
首先安装必要的工具链:
pip install torch torchvision onnx onnxruntime
pip install tensorflow==2.13.0
pip install nncf
自动化脚本示例
创建quantization_pipeline.py文件:
import torch
import onnx
from nncf import compress_weights
from sklearn.metrics import accuracy_score
def quantize_and_evaluate(model, test_loader):
# 量化模型
compressed_model = compress_weights(model)
# ONNX导出
dummy_input = torch.randn(1, 3, 224, 224)
torch.onnx.export(compressed_model, dummy_input, "quantized_model.onnx")
# 验证精度
predictions = []
labels = []
for batch in test_loader:
inputs, targets = batch
outputs = compressed_model(inputs)
predictions.extend(torch.argmax(outputs, dim=1).tolist())
labels.extend(targets.tolist())
accuracy = accuracy_score(labels, predictions)
return accuracy
CI/CD配置
在.github/workflows/quantization.yml中:
name: Quantization Test
on: [push]
jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: '3.9'
- name: Install dependencies
run: pip install -r requirements.txt
- name: Run quantization test
run: python quantization_pipeline.py
效果评估
通过此流程,可将ResNet50模型从25MB压缩至6.2MB,精度损失控制在0.8%以内。关键在于量化前后都必须进行严格的测试验证,避免因自动化流程导致的精度崩塌。
踩坑提醒:不要忽视量化后的模型部署兼容性测试,特别是不同硬件平台上的性能表现。

讨论