机器学习模型推理延迟超过阈值时的自动降级机制
在生产环境中,当ML模型推理延迟超过预设阈值时,系统需要自动触发降级机制以保证服务稳定性。
监控指标配置
# Prometheus监控配置
- metric: model_inference_duration_seconds
- labels: {model_name="fraud_detection", version="v2.1"}
- histogram_quantile: 0.95
- threshold: 500ms
自动降级实现
import time
from prometheus_client import Histogram, Counter
class ModelDegradationManager:
def __init__(self):
self.delay_threshold = 500 # ms
self.degraded_mode = False
self.degradation_start_time = None
def monitor_inference(self, model_name, inference_fn):
start_time = time.time()
try:
result = inference_fn()
duration = (time.time() - start_time) * 1000 # 转换为毫秒
# 检查是否需要降级
if duration > self.delay_threshold and not self.degraded_mode:
self.trigger_degradation(model_name)
return result
except Exception as e:
return result
def trigger_degradation(self, model_name):
self.degraded_mode = True
self.degradation_start_time = time.time()
# 降级逻辑:使用简化模型或缓存响应
print(f"Model {model_name} degraded at {time.time()}")
告警配置方案
# Alertmanager规则
ALERT ModelLatencyDegradation
IF model_inference_duration_seconds{quantile="0.95"} > 500ms
FOR 2m
ANNOTATIONS {
summary = "模型推理延迟超过阈值"
description = "模型 {{ $labels.model_name }} 推理延迟 {{ $value }}ms,已触发自动降级"
}
当告警触发后,系统会自动切换到降级模式,同时发送通知到运维团队。

讨论