基于日志分析的模型异常请求识别与告警
问题背景
在生产环境中,我们发现模型推理服务出现间歇性响应超时,但常规监控指标未触发告警。通过深入分析日志发现,部分请求在特定时间段内出现显著的延迟模式。
监控指标配置
# prometheus监控配置
- job_name: 'model_service'
metrics_path: /metrics
static_configs:
- targets: ['localhost:8080']
metric_relabel_configs:
- source_labels: [__name__]
regex: 'request_duration_seconds'
target_label: metric_type
replacement: duration
- source_labels: [__name__]
regex: 'request_count'
target_label: metric_type
replacement: count
# 日志分析指标
- log_patterns:
- pattern: 'REQUEST.*duration=(\d+)ms.*status=(\d+)'
labels:
duration_ms: $1
status_code: $2
告警规则设置
# alerting rules
- alert: HighLatencyRequests
expr:
rate(request_duration_seconds_count[5m]) > 100
AND
histogram_quantile(0.95, request_duration_seconds_sum / request_duration_seconds_count) > 2000
for: 3m
labels:
severity: warning
service: model-inference
annotations:
summary: "模型请求延迟过高"
description: "95%请求延迟超过2秒,当前延迟{{ $value }}ms"
- alert: AbnormalRequestPattern
expr:
rate(log_requests{level="ERROR"}[10m]) > 5
AND
histogram_quantile(0.99, log_duration_ms) > 3000
for: 2m
labels:
severity: critical
service: model-logging
复现步骤
- 模拟高并发请求:
ab -n 1000 -c 50 http://localhost:8080/predict - 查看Prometheus指标:
curl http://localhost:9090/api/v1/query?query=request_duration_seconds - 观察告警触发:
kubectl get alerts
解决方案
通过设置基于分位数的动态阈值,实现了对异常请求模式的精准识别。当95%请求延迟超过2秒且请求量大于100次/分钟时触发告警。

讨论